NASA-CR-197423

N95~-23409
Unclas

C3B/37

(North
and Tech.

A
LER-BASED THREE

423)
REEDOM MANTPULATCR

ricultural
125 p

- Thesis
)

7
L

3 A
niv?

0042600

NA6 /- X8 3

* . . '/ /’7&
North Carolina State University /e
Sl 2T =
EXECUTIVE SUMMARY
Coe™ 0

The overall goal of "Telerobotic Control of a Mobile Coordinated Robotic Servicer:;/ 2600
project is to develop advance control methods that would enhance the usage of robotic systems)25 /
for space applications. Towards this end, several algorithms have been developed from this
project. One area of development was to extend the methodology of the Observer/Kalman Filter
Identification (OKID) approach, developed at NASA Langley, to such design problems as
frequency spectrum reconstruction, improved parameter estimation from frequency data and
recursion structures to improve computational performance. This area addressed the
iwmmmmmmmmwmmmmmMmmmmmMmwm@mmmm@%mwmmm
self-tuning adaptive control. The approach has applicability to many types of systems, including
robotics, when the system structure or parameter set is unknown or has variations.

The second area of control research focused on fuzzy control which is a non-parametric
(non-model-based) knowledge-based approach. In this area, adaptive algorithms were developed
using self-tuning scaling factor schemes in the fuzzifier, self-learning schemes in the control
rulebase and optimization to extend the method to multi-input, multi-output systems. As a
knowledge-based approach, the MIMO adaptive fuzzy controller uses a computationally efficient
rulebase to determine control commands when the system model (the robot dynamics) is partially
unknown or varies with time.

The final phase of this effort was devoted to the design, fabrication and testing of a robot
manipulator arm which is attached to a mobile robotic system, a rover, built at the Mars Mission
Research Center. The rover is currently under teleoperation mode and will have capabilities for
full autonomy. The manipulator arm along with the mobile robotic system will be used to test all
of the control algorithms that have been developed though this effort as well as other programs at
the Mars Mission Research Center.

What follows is the MS thesis of Mr. Mike Brown. Mike spent a summer at NASA
Langley working in the Spacecraft Dynamics Branch. His thesis develops the design and testing

of the manipulator arm on the teleoperated mobile robotic system.

ABSTRACT

BROWN, JR., ROBERT MICHAEL. A Microcontroller-Based Three Degree- -of-
Freedom Mampulator Testbed. (Under the direction of Gordon K. F. Lee.)

A wheeled exploratory vehicle is under construction at the Mars Mission
Research Center at North Carolina State University. In order to serve as more
than an inspection tool, this vehicle requires the ability to interact with its
surroundings. A crane-type manipulator, as well as the necessary control
hardware and software, has been developed for use as a sample gathering tool
on this vehicle. The system is controlled by a network of four Motorola
M68HC11 microcontrollers. Control hardware and software were developed in a
modular fashion so that the system can be used to test future control algorithms
and hardware. Actuators include three stepper motors and one solenoid.
Sensors include three optical encoders and one cable tensiometer.

The vehicle supervisor computer provides the manipulator system with the
approximate coordinates of the target object. This system maps the workspace
surrounding the given location by lowering the claw, along a set of evenly spaced
vertical lines, until contact occurs. Based on this measured height information
and prior knowledge of the target object size, the system determines if the object
exists in the searched area. The system can find and retrieve a 1.25 in diameter
by 1.25 in tall cylinder placed within the 47.5 in® search area in less than 12
minutes. This manipulator hardware may be used for future control algorithm

verification and serves as a prototype for other manipulator hardware.

A MICROCONTROLLER-BASED THREE DEGREE-OF-FREEDOM
MANIPULATOR TESTBED

by
ROBERT MICHAEL BROWN, JR.

A thesis submitted to the Graduate Faculty of
North Carolina State University
in partial fulfillment of the
requirements for the Degree of
Master of Science

MECHANICAL ENGINEERING

Raleigh
1995

APPROVED BY:

Chair of Advisory Committee

BIOGRAPHY

Robert M. Brown Jr. was bomn in Rocky Mount, NC, on December
1, 1965, to Mike and Marie Brown. He graduated from the North Carolina School
of Science and Mathematics in June 1984. While attending NCSU and taking
part in the cooperative engineering program, he spent five semesters working for
NASA at Wallops Island, VA. He received a B. S. of Aerospace Engineering
from NCSU in May 1989. He was married to Kathy Tyndall (NCSU ‘89) in June
1989 after which he spent two years working for NASA at Wallops Island, VA. In
May of 1991, Mr. Brown left NASA to work at the National Undersea Research
Center at the University of North Carolina at Wilmington. In January 1993 he

enrolled in the graduate program at NCSU.

ACKNOWLEDGMENTS
| would like to recognize my family, professors, and friends. Without the
assistance and support of Kathy Tyndall Brown, Mike and Marie Brown, Dr.
Gordon Lee, Dr. Larry Silverberg, Chih-Kang Chao, Keita Ikeda, and the faculty

and staff of the Mars Mission Research Center this goal would have been

unattainable.

TABLE OF CONTENTS

Page

BIOGRAPHYcociereerssnesesismanssssansansstsstsnsensesssssssssssiamasenssasastasesassssssassnnsanssnsssassiass i
ACKNOWLEDGMENTS ..covcornisessimmssnnssmsesssarsesssssmsssansassnassasssassnsusmsssanssassacsacanss ii
LIST OF FIGURES ..oovrevuseeesmmrersasensessassssssssssssasssssssinsssssssssassassss ersesemserassenaenenes vi
LIST OF SYMBOLS...cucoeememearsssessamsansuemsansssnsarssssamassesssmsassssssasssamsamasassssnsssassasasses vii
Chapter One: INTRODUCTION .c..cuorrumrussmussmmimmasmmmassnsssnsssasssssssmasssmsssassassasessses 1
A. Background INfOrmMationceeeessmmessessesmmisssnnmsssssesasmssmssmsassasmsssassasasses 1
B. Research Objectives and Problem Developmentcceemierrassessannaaannaes 3
C. Thesis Organizationcceersssmsnenssssiessssssssnsssssams s 5
Chapter Two: SYSTEM HARDWARE DESCRIPTION ...ccocctesercsennnnasnnssensasasrens 7
A. Crane StrUCIUIE.....ccerureiseusesnismsenssusssssanssensasonsntssssnsasaansarassasssnassssansasasssass 7
B. Coordinate System and WOrkSPaceccsesiarssmensssmsssssmsasmsansssssssssses 8
C. ACHUALOTS c.cuvrurreereemsarsesnessasamssesarsssasasssmansasansssasmaasassatsmsesastassssmsssamsarassassssass 9
Stepper Motors and DIVETS ..ot 9
Solenoid ACtUALEA ClaW ...c.coveiiieiiierrerenmnesisisn st 10

D. SENSOIS weoverrerrarssramsatssestassassasansssssstessassmssnatatsatssiasmastsassssassomsissessinissionsses 11
OPHCAl ENCOTETScvuevvresseseemssissessss sttt 11
CabIE TONSIOMELET....c.eevecuterirrireiereses et 12

E. MiCrOCONIIOIIErS. .ccceamsursmssmsarsansisssssnssnsnssanassssssssansamssnssmsnassatansanaansassasssess 13
Motorola 68HC11E9 General Description ... 14
MASEET COMIONBT ... evvirerereerenreriere e sse e e 17
MOTOT COPEFOHET o.veviereererereeeeesitee ettt 18

Chapter Three: CONTROL SOFTWARE DESCRIPTIONccocvmieniiinnccnnicnnannns 19

A. Supervisor / Master Controller LOOpP.....cccciurminrinnnsinnanscsssssssscnsennes 20
B. Master Controller / Motor Controller LOOpcccvrieivecsccnniecnennnnnnnnncnnnes 20
C. Motor Controller / Motor LOOP.....cccceriiirmieneenmicsssassssnnmesscnsensassssssensannns 22
D. Master Controller / Claw LOOP....cccecvmeiescmtiniemmrscansinssnanrisssensssnssssassansens 23
Chapter Four: APPLICATION OF CONTROL SOFTWARE TO CRANE
SYSTEM c.nnveeeeeersersassessensesssnesantrssssasssssessssinssastessassssossntssassessassesssassantsssnnsesssanrase 25
A. TESt SCONATIOS ...curuermemmereerasssssssassanssnssnnnansimmmsssssssnessearsassansssssasssnnsssasnnases 25
B. Results and EvValuationccccccncmseammammeniesssnnmsnsmnnissssnsssssassnsnnnsannessnnse 28

Chapter Five: CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK..35

Chapter Six: REFERENCESccconuemnimiinmnemmmsennssinssssssassssassssrssssscns 37
APPENDICES ...c.ccccercessesesssssssesansessssisasssassasssssssssssssnsssassessastsasassesnsassasassannsssascess 39

A. Master Controller Circuit Diagramcccccecccrimmressisscnniannassninssssssasennnen 40

B. Motor Controller Circuit Diagram....ccccvvrenmiissccaniressansinssnenscssennisssnsns 44

C. Master Controller Program Listingcccccvsminimnisninsnnessnsseniscannnscnnnenee 47

D. Motor Controller Program Listing ...cccccceveeicinsiinnmmnncsniinsscsisssnanansennens 93~

E. Using PCbug11 To Program The Motorola 68HC11ES........coocevecnianad 10~ /1!

FIGURE 1-1:
FIGURE 2-1:
FIGURE 2-2:
FIGURE 2-3:
FIGURE 2-4:
FIGURE 2-5:
FIGURE 2-6:
FIGURE 4-1:
FIGURE 4-2:
FIGURE 4-3:
FIGURE 4-4:
FIGURE 4-5:

FIGURE 4-6:

LIST OF FIGURES

NCSU MARS ROVERcociiiiereciitiinnr e sanes s s 4
MANIPULATOR SYSTEM...viiriiiiiiiiirieniee e nananen e 7
CRANE STRUCTUREotteiiccrentieiereeeninee e senssesannesssssnsasae e 8
COORDINATE SYSTEM.cciiiireiriiiie it 9
END EFFECTOR WITH SAMPLE OBJECTcccoiiiiiniininniine 11
TENSIOMETER HARDWARE ..ot 13
CONTROLLER HARDWAREooiiiiriniisicneee 14
SEARCH PATTERNottt sttt ssin s tas e 27
TYPICAL RELIEF MAP OF MINOR GRIDcccoiniiiiiiiniiiienne 28
CASE 1 ACTUATOR OUTPUT ..ot 31
CASE 2 ACTUATOR OUTPUT ..o 32
CASE 3 ACTUATOR OUTPUT ...oiiiiiiciiiiiiininnese e 33
CASE 3 RELIEF MAP ...oviieiiiiiiier e innssassss s eianss e 34

Vi

LIST OF SYMBOLS

PP ceveeresneennennessesssnenes two ASCII characters representing vehicle pitch (degrees)
QQ vererenerremnnmersemsamsaeansanes two ASCII characters representing vehicle roll (degrees)
S RTRTU U OO PO PPPPPRPPSST ORI radius coordinate of claw position (inches)
e O GUTTTTTU U T UUROPURVRRPPPPPPITE four ASCII characters representing the radius

coordinate of claw position (inches)
2 SUUUUET U U U U U U U U OO PPPPTPPPPPP DTS height coordinate of claw position (inches)

ZZ.Z e eeeeeerrarrereaseeaaasaassaaeanaanaass s ananenns four ASCII characters representing the height
coordinate of claw position (inches)

- WRUTTTTTTUUT T PP PO TP PO PPPPPRPROPS angular coordinate of claw position (degrees)

000 .ooeeeeeeieiereerrerrrieer e three ASCII characters representing the angular
coordinate of claw position (degrees)

(Ja veeresnssssseessscssmss s R actual value
[TR RR RIS desired value
[PR RRSRE R NERIEE U target value

vii

Chapter One: INTRODUCTION

Robotic vehicles are ideal for the exploration of hostile environments.
These devices allow humans to investigate areas that would otherwise be
difficult or impossible to reach. In order to serve as more than inspection tools,
these robots must have the ability to interact with their surroundings. An
undersea vehicle on a scientific mission must often collect sediment and water
samples1. A Space Station assembly vehicle must be able to position and
connect building materials. An emergency response robot could open doors and
move debris while searching for injured victims in a buming building. A robotic
vehicle in a hazardous material spill area could be used to locate and close a

critical valve.

A. Background Information

Three basic types of joints, revolute, prismatic, and suspended cable, are
typically used by manipulator systems. Revolute joints, like a human elbow,
rotate about an axis. Prismatic joints, like an extension ladder, extend or retract
along a linear path. Suspended cable systems, used in place of rigid structural
members on crane systems, also extend or retract. The key difference is that
the path followed by a payload suspended by a cable is a function of
gravitational effects and environmental disturbances.

A revolute joint system, such as the manipulator arm used on the NASA

space shuttle, is very maneuverable. The variable direction of approach, made

possible by the slender structural members and multiple revolute joints, allows
the retrieval of unsymmetrical payloads. In the weightless environment of space,
the joint actuators must position the end-effector and damp unwanted motion.
However, in a similar system operating vertically in a gravity field, the joint
actuators must also support the manipulator structure and payload. Lower
payload capacities, relative to a crane with identical actuators, result.

Prismatic joints are often used in systems where precision is more
important than range of motion. Extremely fine control of an end effector
trajectory is possible with rigid links and prismatic joints. This advantage is
gained at the expense of mechanical complexity and additional weight. Loss of
mobility also results since the distance that a joint can extend is limited by the
length of the telescoping member.

Suspended cable joints, found in crane systems, are capable of extreme
ranges of motion. Cable, unlike rigid members, can be stored in great lengths on
winch drums. Since the structure, not the actuators, of a crane carries bending
loads, relatively high payload-to-system-weight ratios can be achieved. The key
disadvantages of a crane system are the difficulties in controlling all six degrees-
of-freedom of the end effector and in damping undesired motion.

The National Institute of Standards and Technology (NIST) has developed
a six degree-of-freedom crane called ROBOCRANE?. This system uses cables
as structural links, winches as actuators, and cable travel encoders as sensors.

A cable, a winch actuator, and an encoder are required for each controlled

degree-of-freedom to ensure a fully constrained system. This technology is
applicable to various types of crane platforms, such as tower, boom, and
overhead, as well as lower degree-of-freedom systems.

Depending on system requirements and research objectives, algorithms
used in crane control vary from classical to discrete® to fuzzy logic* schemes.
The Motorola M6S8HC11 is a relatively inexpensive microcontroller allowing the

5,6
|

use of both classical™” and fuzzy control techniques’.

B. Research Objectives and Problem Development

An autonomous wheeled exploratory vehicle is currently under
construction at the Mars Mission Research Center at North Carolina State
University®>®'®. This vehicle, pictured in Figure 1-1, will be tasked with the
exploration of unfamiliar terrain. In order to effectively carry out this mission, the
vehicle must avoid dangers, such as boulders and crevasses, gather information,
such as visual images and sensor data, and collect physical samples, such as
rock and soil. The latter mission requirement makes a manipulator subsystem
necessary.

The purpose of the research presented in this thesis is to develop a
manipulator that serves two purposes. The first goal is to provide the required
environmental sample gathering tool for a Mars vehicle prototype. The second
goal is to provide a platform for future robotic manipulator research activities. A
crane-type manipulator system configuration was selected to insure adequate

payload capacity. Motorola microcontrollers were selected so that the prototype

payload capacity. Motorola microcontrollers were selected so that the prototype
system will be capable of implementing both traditional and modern control
techniques. The structural hardware, electrical hardware, and control software
have been designed and constructed in a modular fashion. Future researchers
will be able to further optimize the system by modifying individual hardware and

software components.

Figure 1-1: NCSU Mars Rover

Based on the existing vehicle design, the following criteria must be met by

the vehicle and manipulator subsystem.
1) The vehicle must

. Provide 12 V and 48 V electrical power.

4

Provide an ASCI! string, via a serial link, containing manipulator
platform pitch and roll as well as object location in cylindrical

coordinates. The string format will be +pp,+qq,+660,%r.r,+zz.z.

Disable the wheel motor subsystem during manipulator operation.
Confirm retrieval of desired object with vehicle sensor devices,

such as vision or ultrasound.

2) The manipulator system must

Fit in a space that measures 18 in long by 8 in wide by 18 in tall.
Weigh no more than 20 Ib.

Find and retrieve a typical environmental sample, approximated by
a 1.25 in diameter by 1.25 in tall cylinder, when provided with a
target location inside the workspace and within 4 in of actual object
location.

Be capable of liting a payload weighing up to 1 Ib.

C. Thesis Organization

This thesis is divided into seven chapters. Chapter 2, System Hardware

Description, describes mechanical and electrical system componernits. In

Chapter 3, Control Software Description, a discussion is presented on the

software embedded in each of the four controllers. Chapter 4, Application of

Control Software to Crane System, details the system tests and results. Finally,

Chapter 5, Conclusions and Suggestions for Future Work, states conclusions

and offers ideas for system improvements. Appendices contains commented

computer code for each type of controller and programming instructions.

Chapter Two: SYSTEM HARDWARE DESCRIPTION

The manipulator system is composed of the master controller, three motor
controllers, three motor drivers, three stepper motors, three optical encoders, a
solenoid actuated claw, a tensiometer, and the crane structure. These

components are pictured in Figure 2-1 and are discussed in the following

sections of this chapter.

Figure 2-1: Manipulator System

A. Crane Structure

Four major components, illustrated in Figure 2-2, make up the structure of
the manipulator. The tower is the vertical structure about which the boom pivots.
The lower flange of the boom acts as a track for the trolley. The claw is

suspended on a aramid fiber cable from the trolley. The tower, boom, and trolley

are constructed of readily available components to allow modification by future
users. The main structural components are formed from prefabricated fiberglass
l-beam, channel, and angle stock. The boom and cable drum are driven directly
by their respective motors. The trolley position is controlled via a chain drive with

the third motor.

Figure 2-2: Crane Structure

B. Coordinate System and Workspace

The three coordinates used to describe the position of the closed
manipulator claw tips are illustrated in Figure 2-3. The radius (r) and angle (6)
are standard polar coordinates when the system is viewed from above. The
radius is measured from the rotational axis to the trolley center. The angle is

measured counter-clockwise from home position. Note that the angle illustrated

in Figure 2-3 is in the negative direction. The height (z) is the distance from the

8

baseplane to the claw tips, where a positive value of z is used for points above

the plane.

Figure 2-3: Coordinate System

C. Actuators

Stepper Motors and Drivers

The three positioning actuators in this device are Pacific Scientific
Powermax P21NRXA-LDF-M1-00 stepper motors. Each is driven by a Pacific
Scientific Sigma Model 5210 motor driver. Each motor requires 2.5 Aati2V
and provides a holding torque of 114 oz-in. In addition to power, the motor driver

requires two logic inputs. The level of the direction input determines the direction

9

of rotation. A square wave applied to the second input results in a motor step for
every wave period.

The motor responsible for lifting the claw and captured object was
selected to maximize the payload capacity of the system. Identical motors were

selected to control boom and trolley location, to standardize hardware, and to

increase modularity.

Solenoid Actuated Claw
The claw, illustrated in Figure 2-4, is the same type used in arcade
games. A more forgiving control system and minor claw modification result in a

much better success rate. The claw has three fingers, located 120° apart, that

are activated by a 48V solenoid. Original tests, involving a range of object types,
demonstrated that, while the claw was very effective at “scooping” up a large
object, such as a four inch diameter sphere, it was not capable of holding most
smaller objects in its fingertips. To include small objects in the target range,
these fingers were medified by the addition of claw tips. These tips, acting as
fingernails, are 0.063 inch diameter rods protruding one-quarter inch from the

fingertips. They result in a great enhancement in gripping capability.

10

Figure 2-4: End Effector With Sample Object

D. Sensors

Optical Encoders

A U. S. Digital Model E2-512-250-IE optical encoder is mounted on the
shaft of each stepper motor. The resolution of each encoder is 512 counts per
revolution. An index pulse, once per revolution, allows the motor controllers to

find home position from the power-on position. Sensor output consists of two

11

square wave signals that, except for phase, are identical. The lead-lag
relationship of these two signals reflects the direction of motion of the encoder.
In general, these signals can be decoded by the motor controller. However, due
to high frequency “ringing” of the stepper motor after a single step command, a
separate chip was used. This chip, an LSI Computer Systems LS7166 24 bit
multimode counter, can accurately decode the encoder signals even with the
high frequency changes in direction of encoder rotation associated with ringing.
The intemal 24 bit counter containing the motor position can be read by the
motor controller via an 8 bit data bus. The use of this chip relieves the

microcontroller of the burden of constantly monitoring the encoder output.

Cable Tensiometer

A slight loss of cable tension, such as occurs when the claw makes
contact with some surface or object, causes an interrupt service routine on the
master controller to be activated. A discussion of this software routine can be
found in Chapter 3. Figure 2-5 illustrates the mechanical components of the
sensor. The key electrical component that enables this interrupt is a conditioned
single-pole double-throw (SPDT) switch. This switch is mounted on a lever
whose position is controlled by the cable tension. The switch and conditioning
circuit'!, detailed in Appendix A, control the state of pin PA3 on the master
controller. This pin has input capture capabilities that are used to trigger the

interrupt service routine.

12

Figure 2-5: Tensiometer Hardware

E. Microcontrollers
Controller hardware consists of one master controller and three motor

controllers. These components are pictured in Figure 2-6 and are discussed in

the following sections.

13

Figure 2-6: Controller Hardware

Motorola 68HC11E9 General Description

The Motorola 68HC11E9 is a one of a family of devices called
microcontrollers or MCUs. An MCU combines discrete communication circuitry,
a processor, a data bus, and memory into a small, low power, single chip
computer. The 68HC11 MCU has 40 input/output pins that allow serial and
parallel communication and analog-to-digital conversion. The 16 bit memory
address of the 68HC11 allows the use of 64K bytes of memory. Internal memory
in the 68HC11E9 consists of 512 bytes of random access memory (RAM), 512
bytes of electronically erasable programmable read only memory (EEPROM),
12K bytes of erasable programmable read only memory (EPROM), a 64 byte
register block, and a 64 byte bootstrap interrupt vector block. The remainder of

the 64K space can be accessed using an external memory chip. Detailed

14

hardware information can be found in M68HC11 Reference Manual'?, M68HC11
E Series Technical Data'®, and M68HC11 E Series Programming Reference
Guide™.

While hardware defines the limits of a microcontroller's capability, the
software is the tool necessary to realize these limits. Program size, execution
speed, mathematical capability, and design are all important considerztions
when measuring the effectiveness of any computer code.

Code for the 68HC11 can be written using a number of high level
languages and assemblers. While languages such as Lisp and C provide data
structures and mathematical functions that allow the intuitive coding of complex
behavior, Motorola Assembly Language was used to generate all code used in
this project. The primary reason for this selection was to simplify code
troubleshooting. Debugging code in t‘he PCbug11 or BUFFALO environment is
straightforward using the disassembler. When using this feature, code is viewed
as assembly code regardless of the original language. The usable result of
debugged and assembled code is an ASCII file in S-record format. This
machine language version of the original program can be read, edited, and
transported to the MCU.

In order to program and debug the MCU, a Universal Evaluation Board
(EVBU) is used . This board, with an MCU inserted, has many of the same
functions as the final version of the motor controller. It provides the MCU with

regulated power, a RS-232 serial interface, an oscillator, and access to all MCU

15

pin logic levels. Since the MCU is a self-contained computer, some software
must be present and running before any meaningful communication with any
other system can occur. Two software applications, provided by Motorola with
the EVBU, are BUFFALO and PCbug11. While allowing the user to perform
nearly the same tasks, these two applications work in very different ways.

BUFFALO is a complex piece of code that must be previously loaded into
MCU memory. When the EVBU is reset, BUFFALO begins execution. This
program allows the user to use a VT100 terminal emulation program and serial
link to connect to the MCU. Once the connection is established, code can be
loaded into RAM or EEPROM, executed, and debugged. The two most
significant limitations of BUFFALO are that it must already be loaded into MCU
memory and that it cannot modify EPROM. BUFFALO is well documented and
discussed in the User's Manual provided with the EVBU™.

PCbug11 is a DOS-based application capable of connecting to an
unprogrammed MCU. During initialization, a small program, called a talker, is
loaded in to MCU memory. This small but powerful piece of code, allows the
user to read and program any available MCU memory location in RAM,
EEPROM, or EPROM. Since only a small portion of memory is used temporarily
for the talker, a much larger block of code can be transferred to MCU memory.
The use of PCbug11 is documented in the PCbug11 User's Manual'®.

One important feature of the MCU is the receiver wake-up operation.

When multiple controllers are used, every controller receives any message sent

16

by a controller on the network. A system must be devised to allow a receiving
MCU to determine if it is being addressed. The address-mark wake-up feature,
available on the 68HC11 MCU, solves this dilemma. Each MCU is placed in a
dormant state by enabling the RWU bit in the SCCR2 register. In order to select
any controller, a byte of information must be sent in which the most significant bit
is set. The remaining seven bits are used as a coded address. This byte of
information will wake up each controller. The software running on each MCU is
responsible for determining if the encoded address matches its own. |f no match

exists, the software is responsible for placing the MCU back in the dormant

mode.

Master Controller

The master controller includes a 5 V voltage regulator, a M68HC 11
microcontroller, a crystal oscillator circuit, and a reset circuit. [n addition, the
master controller, detailed in Appendix A, also contains an extemal 32K RAM
chip, a claw solenoid activation circuit, the conditioning circuit for the tensiometer
switch, and serial communications hardware for five serial ports. The external
RAM allows for increased program size and faster reprogramming time than
using intemal EPROM. Using this external memory requires that the MCU be
used in expanded mode. As a result, ports B and C are no longer usable as
external 1/O pins. The claw activation circuit consists of a transistor driven relay
switch. The conditioning circuit for the tensiometer is discussed in the

tensiometer section. The communication hardware consists of three RS-232

17

serial port drivers and one asynchronous communications interface adapter
(ACIA). Two of the RS-232 drivers each control two serial ports. These four
ports, connected to the TxD and RxD MCU pins, are used to communicate with
the motor controllers. The last driver is used, along with the ACIA, to allow serial

communication with the supervisor computer via the Port C data bus.

Motor Controller

Like the master controller, the motor controller, detailed in Appendix B,
contains a 5 V voltage regulator, a M68HC11 microcontroller, a crystal oscillator
circuit, and a reset circuit. In addition, it contains optical encoder decoding circuit
and one RS-232 serial driver. The decoding circuit is discussed in the section on
optical encoders. The single serial driver is used to allow communication with

the master controller via the RxD and Txd MCU pins.

18

Chapter Three: CONTROL SOFTWARE DESCRIPTION

Each of the four microcontrollers contains embedded control software.
These programs were coded in assembly language for the Motorola M68HC11
series microcontroller. Each program is written as a text file, assembled, and
downloaded to the microcontroller RAM, EPROM, or EEPROM using PCBUG11
or BUFFALO. A listing of the code used in the master controller can be found in
Appendix C. A listing of the code used in a typical motor controller can be found
in Appendix D. Appendix E contains Motorola application notes outlining the
steps necessary to write, assemble, store, and run a piece of sample code.

The master controller contains the code necessary to service the
supervisor computer, the claw actuator and sensor, and each of the three motor
controllers. The motor controller code, identical in each case except for
constants defining position limits, controller address, and motor speed, is
responsible for driving and sensing motor position and communicating with the
master controller.

Since the exploratory vehicle system is currently under construction, an
IBM-compatible 486DX-33 personal computer running PROCOMM terminal
emulation software is used in place of the supervisor computer. Any computer
with a 9600 baud serial connection and software to access that port can be

substituted for the supervisor computer.

19

Discussion of the two programs is divided into four sections. Each section
focuses on the algorithm used to control the interaction between two hardware

component systems.

A. Supervisor / Master Controller Loop

The link between the supervisor and the master controller has two
functions. First, the supervisor must provide the master controller with an ASCII
string containing platform orientation and target coordinates. Second, the
master controller provides claw trajectory information that can be used for
system monitoring. The supervisor must examine the sample object and
resubmit the command if the correct object was not retrieved.

All data transfer is accomplished via a 9600 baud serial connection. Data
strings are in ASCII format to allow easier debugging and system monitoring.
These strings are converted into hexadecimal values upon receipt by the master.

Each time the master receives information from a motor controller or
sensor, a character string is sent to the supervisor. This string contains position
information for each motor as well as the current state of the claw actuator.

Motor positions are written as absolute angles, in degrees, in hexadecimal form.

B. Master Controller / Motor Controller Loop

The master controller, upon receiving the approximate target location,

calculates the desired motor positions. These positions are functions of the

desired position (8,r,z) and platform orientation (p,q). The master algorithm

20

approximates the motor positions by assuming that the platform is level during
manipulator operation. This assumption decouples the effects of motor positions
on claw position. Each motor is assumed to control one degree-of-freedom and
have no effect on the other two degrees-of-freedom.

Since the claw is suspended on a cable, it will always move along a
vertical line. When pitch and roll are both zero, this vertical line is parallel with
the z axis. In this situation, the distance that the claw must be extended or
retracted is a function only of the desired z coordinate. Similarly, the trolley

motor only affects r and the boom motor only affects 6. When some platform

pitch or roll exists, there will be an error in claw position whose magnitude varies
with motor positions and platform orientation. Since the object of the maneuver
is not to reach some given position, but rather to find some object within the
search area, the claw position error only becomes a problem if it is sufficient to
position the search area away from the target object. The amount of error that is
acceptable in the system is a function of the search pattern area and grid
resolution.

Given that the platform orientation is neglected, the system is completely
decoupled. As a result, each motor controls a single degree-of-freedom. The
desired motor positions are calculated based on measured values of troiley and
claw travel in degrees per inch, measured motor angles when the claw is in the
home position, and the desired cylindrical coordinates. Values for these

constants can be found the software listings included in Section 0.

21

The master controller issues all commands to the motor controllers and
claw in a serial fashion. After sending each motor command, the master waits
for the motor controller to achieve and feedback its desired position. Two
routines, docmds and docmds2, are used to issue a string of commands. The
first, docmds, performs them in the order of boom motion, trolley motion, claw
motion, and claw activation. The second, docmds2, commands the motors in
the reverse order and but still activates the claw last. The first routine is used to
approach an object. Since this object could be in a depression, the claw is kept
at as high as possible until directly over the target site. The second routine, used
after the object is captured, lifts the claw completely before moving the boom or
trolley.

A portion of the main routine of the master controller software, called
whenever a valid target position input string is received, is listed below.

jsr findit

jsr putaway
jsr gohome

The first routine, findit, is responsible for searching for and grasping the object.
The search algorithm is addressed in Chapter 4. The second routine, putaway,
directs the claw to move to a receptacle and release the object. The last routine,

gohome, sends the claw back to its home position.

C. Motor Controller / Motor Loop

The motor controller receives a hexadecimal number, in ASCII characters,

representing the desired absolute angle of the motor. The actual motor position

22

is read from the decoder chip and converted into degrees. These two values are
compared and a desired rotation, in degrees, is calculated. This number is
converted into motor steps. The motor controller then drives the direction pin on
the motor driver high for forward motion or low for reverse motion. A square
wave is then applied to the driver input pin. The number of pulses in this wave
corresponds to the number of desired steps. The frequency of the wave
determines motor speed. The motor controller again reads the decoder chip and

the process is repeated as necessary. An error of 1° is allowed between desired

and final actual motor position. This allowance is necessary due to the encoder
resolution and integer division necessary to convert the encoder value to
degrees. When the final position is attained, the motor controller echoes its

current absolute position to the master controller.

D. Master Controller / Claw Loop

The master controller, in addition to performing high level motor position
control and communication with the supervisor, is responsible for claw activation
and obstacle contact detection. The claw is commanded via a relay on the
master controller circuit board. Contact between the claw and some obstacle is
monitored via a boom mounted switch and conditioning circuitry mounted on the

master controller circuit board.
The master controller enables or disables the claw by varying the state of

one of the microcontroller output pins. The pin indirectly drives the claw solenoid

using a transistor and a relay.

23

A sudden and sustained loss of tension occurs as a résult of contact
between the claw and some surface. The loss of cable tension causes the
activation of an interrupt service routine on the master controller to command the
motor controller to stop and slightly raise the claw. This motion allows the claw
to better grip the target object.

This feature is vital to the success of the searching algorithm. The claw is
closed to minimize the projected area on the work surface and to limit contact to
one point instead of three points. The claw is then lowered at predetermined
points until contact is made. The absolute heights of these points are stored
until all points are searched. After all nine heights are measured, they are
converted into quarters of an inch above the lowest of the nine points. The
predetermined object height is 1.25 in. Software selects the first of the nine
points that happens to be higher than 1 in. If no object tall enough is found then
the search pattern may be repeated at another location. In general, a complete
search includes the mapping of 47.5 in2. The search pattern and mapping

technique are discussed in more detail in Chapter 4.

24

Chapter Four: APPLICATION OF CONTROL SOFTWARE TO

CRANE SYSTEM

A. Test Scenarios

A series of three test cases was used to determine the ability of this
manipulator device to retrieve an object. In case one, the claw moves to a
specified location, grips the object if one exists, moves to the drop zone,
releases the object, and retums home. In case two, the boom and trolley are
moved to the positions specified. At this point, the claw is lowered until it makes
contact with the ground or an object. The claw then lifts slightly, grips the object,
and completes the maneuver. In case three, a relief map of the area
surrounding the point of initial contact is created. Based on information
contained in this map and prior knowledge of the target object, either the object
is located or a new area is searched. Ultimately, either the object is found and
the maneuver completed or the search is abandoned.

In case one, the claw moves toward the specified location (8,r,z)q by first
swinging the boom into position (64) and then moving the trolley (rg). Once the

claw is suspended above the desired point, it is lowered to the appropriate height
(z4). In the trajectory used in this case, only one motor is in motion at any given
time. Controller hardware does not limit the system to this serial motion. This
method is used to avoid undesired contact between the claw and the

environment. Due to the crane structure, any motion of boom or trolley requires

25

that no obstacles be present in the space through which the suspended claw
moves. Keeping the claw retracted until all other motion is complete decreases
the chances of an unwanted collision with obstacles in the workspace. Upon
reaching the desired location, the claw is activated. No method of target object
confirmation is currently in place as part of this system. The vehicle supervisor
computer is responsible for confirming that the correct object was retrieved using
some part of its sensor array. The object, having been retrieved, is moverd to a
previously defined point and dropped into a receptacle. The claw is then
returned to home position.

The key difference in case two is that the final height of the claw (z) is not
necessarily the height specified (z5). When the exact height is unknown by the
supervisor, a value at the limit or beyond the reachable workspace is used.
Whenever the claw makes contact with some object before the specified height
is reached, the claw descent is halted by the master controller. Next, the claw
suspension cable is retracted a distance of between one-half inch and one inch.
This claw height above the ground was determined by trial-and-error to be ideal
for gripping the target object. The claw is then closed and the remainder of the
maneuver is identical to case one.

In case three, the specified boom and trolley positions (8,r)q define the

central vertical axis of a search space instead of the vertical line along which the
object lies. As in case two, the claw is lowered until it makes contact with the

workspace. In case three, however, this motion occurs at least at the nine points

26

ilustrated in grid 1 of Figure 4-1. The height coordinate (z) at each point is
measured and is normalized by subtracting the lowest height found. The heights
are then converted to a number of quarter inches. A typical resulting relief map
is illustrated in Figure 4-2. Since the object dimensions are assumed known, the
maximum measured height can be compared with a minimum anticipated object
height. If the object is determined to exist at one of the search points, then the
maneuver is completed as in the first two cases. If the object is not found at any
of the search points, then a new section of the workspace is searched. This
mapping process is repeated in the pattern shown in Figure 4-1 until either all the

specified areas are searched or the object is found.

Figure 4-1: Search Pattern

27

Figure 4-2: Typical Relief Map of Minor Grid

B. Results and Evaluation
In case one, the object was retrieved if the boom position was within
approximately 3°, the trolley position was within 0.5 in, and the claw height was

within 0.5 in of the object center. The primary limitation of this scheme is that the
specified position provided by the vehicle supervisor must be fairly accurate.
Precise object location may prove difficult for the vehicle sensors to measure due
to the small size of the object, the natural terrain background, and the difficulty in
sensing within 8 in of the vehicle. Actuator output is plotted in Figure 4-3. The
target position used in this case is +00,+00,-180,+07.0,-10.0.

In case two, the burden of sensing object height is shouldered by the
manipulator device. The vehicle sensors must still synthesize a fairly accurate

two dimensional image of the object as viewed from above. While an

28

improvement over case one, the vehicle sensors still limit mission success. The
target object will typically be sighted before it is within reach of the manipulator.
The vehicle must then move into position and stop before retrieval can occur. As
in case one, this close proximity surface may be difficult to map. Actuator output
is plotted in Figure 4-4. The target position used in this case is +00,+00,-
180,+07.0,-10.0. Note that the only difference in case one and case two is that
the claw height did not reach -10 in. Instead, a collision with an obstacle forced
the claw to stop and grip at approximately -2 in.

Case three actuator outputs are illustrated in Figure 4-5. The boom angle,
trolley radius, and claw height all demonstrate the multipoint sounding technique
used to map the area. As in the previous two cases, the input string was
+00,+00,-180,+07.0,-10.0. In this case, however, the object was actually located
at +00,+00,-150,+07.0,-02.0. The resulting relief map is illustrated in Figure 4-6.
In this case, the specified coordinates must only be accurate enough to ensure
that the object is within the search area. As long as the object is within two
horizontal inches in the radial direction and four horizontal inches in the
tangential direction of the specified position, the object can be found and
retrieved. The ability of the manipulator to map the area and find the object is a
big advantage. Mission success in retrieving the object is much more likely with
this scenario. The major limitation of this method is that the maximum resolution
of the search pattem is limited by the physical dimensions of the claw. Due to

the large diameter of the closed claw, undesired contact between claw and

29

object sometimes occurs. This unwanted contact can cause the object to move
to a previously mapped location and be missed in the search or the claw height
to be inaccurately measured. A future modification of the system would be to
modify the claw so that contact between the claw and objects not directly

beneath it would be reduced.

30

Boom Angle

0 + + + + + + + } + + + +
— 2 3 4 5 6 7 9 1 11
E? .50 8 0 12 13 14 15 16 17 18 19 20 21
RN
= -100
E -150
-200
Event
Trolley Radius
15.0
~— 10.0
=
- 5.0
0.0 + + + + + + + + } ; + + + + + + } + + } 4
{ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Event
Claw Height
&0$
— 0.0 + t + + ¢ + + + + + +]
éi 2 3 10 11 12 13 14 15 16 17 18 19 20 21
~ 5.0
-10.0
Event
Claw Solencoid Status
— 1
S 0.8
& 0.6
0.4
=
8 0.2
© o0

{ 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 18 19 20 21

Event

Figure 4-3: Case 1 Actuator Output

31

Boom Angle

0 + + . + ——t - ; e + +
2 3 4 5 6 7 8 9 10 11 12 13 ¥4 1
E? .50 5 16 17 18 19 20 21
=
= -100
-7}
= -150
.—.
-200
Event
Trolley Radius
15.0
= 10.0
- 5.0
0.0 - + + + + + + t t + ! + } t + + + t + t |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2t
Event
Claw Height
4.0
—_— 2.0
=
M~ 0.0 t t + + + + + + t } -
2 3 10 11 12 13 14 15 16 17 18 19 20 21
-2.0
Event
Claw Solenoid Status
—_ 1
S o8
- 0.6
N
0.4
x
J 0.2
< o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Event

Figure 4-4: Case 2 Actuator Output

32

Boom Angle

= -50
1]
= -100
8 150
Q
= -200
-250
Event
Trolley Radius
15.0
E10.0 w
A
— 5.0
0.0
-— M= o o Lo y— P~ o oD [N o] — M~ o o) (W) — M- o
N2l Eg5288s888F7F
Event
Claw Height
4.0
2.0 r
=
=. 0.0
~ AR T VT T T T TE TR TR TETETY ="
-2.0 —_— e e e NN NI M e o o
-4.0
Event
Claw Solenoid Status
1.4
p—
=
F 0.9
El 0.4
Q
-0.1 X2 — o o — o o — o
Syl ™~ [] o w [==] [o [Xw] o — o w2 [=x] — ~r
— -— -— -— o o~d [V) o (o] o oM o ~-r -
Event

Figure 4-5: Case 3 Actuator Output

33

Figure 4-6: Case 3 Relief Map

In all three cases, an intermittent hardware or software error occasionally
gives grossly inaccurate count values in motor position. This problem has been
resolved in software by comparing the actual counter value and an estimated
value. When gross differences occur, the estimate is used by the motor

controller and the master controller is notified.

34

Chapter Five: CONCLUSIONS AND SUGGESTIONS FOR

FUTURE WORK

The manipulator system successfully meets the stated requirements of
size, weight, and functionality. A clay cylinder measuring 1.25 in by 1.25 in was
used as the target object during system testing. Given an initial boom angle

within 24° and an initial trolley position within 4 in of the actual values, the

system will locate and retrieve the target object approximately 80% of the time.

The search and recovery algorithm eliminates the need for precisely
measured target coordinates. This feature allows the rover to dedicate its
sensors to more important data gathering. It also eliminates the need for
sensors dedicated to surveying the area within 8 in of the vehicle base. The
vehicle can locate an object at a distance limited only by its sensor arrays, move
into position near the object, and provide the manipulator with estimated
coordinates relative to the vehicle.

The manipulator does occasionally miss the target in its search and
recovery effort. In these cases, the claw typically causes the object to move into
an already measured point when sounding the area immediately surrounding the
object. As a result, the object does not show up in the search map. In these
situations, the vehicle sensor system will sense the absence of the target object

and will resubmit the command. This tactic of multiple attempts is usually

successful.

35

The system is constructed in a modular form that will allow future users to
optimize the interaction between the vehicle system and the manipulator
subsystem. Sensors and actuators can be modified to provide new performance
characteristics. Control software can be altered for testing of new control and
search algorithms.

Modification of the end effector could improve system effectiveness in
three ways. A smaller claw would both allow a higher resolution mapping
algorithm and reduce unwanted claw/object interaction. This change wiii allow a
finer resolution and smaller object search capabilities. Redesigning the fingers
of the claw could increase the acceptable variation of object size, shape, and
consistency.

The master controller software listed in the Appendices neglects the
effects of platform orientation on actual position. Since the claw is suspended by
a cable, a change in position of the motor controlling claw height results in claw
motion along the z axis of the world coordinate system. Any pitch or roll of the
vehicle will cause the z axis of the manipulator coordinate system to no longer be
parallel with the z axis of the world coordinate system. Inclusion of these effects
when calculating desired motor positions based on a specified target coordinates

would result in increased accuracy in claw placement.

36

Chapter Six: REFERENCES

' R. M. Brown, Jr., G. K. F. Lee, and A. W. Hulbert. Environmental Sampling
Tools Designed For Use On A Low Cost Remotely Operated Vehicle (LCROV).
Proceedings of Diving For Science 1992, 23-30, 1992.

2). Albus, R. Bostelman, and N. Dagalakis. The NIST ROBOCRANE. Joumal
of Robotic Systems, 10(5):709-724, 1993.

3 R. M. DeSantis and S. Krau. Bang Bang Control of An Overhead Cartesian
Crane. Proceedings of the 1993 American Control Conference, 1:971-975,

1993.

4 H. Ihara. Fuzzy Logic For Control Systems. Automatic Control in Aerospace
1992, 251-255, 1992

5 J. L. Jones and Anita M. Flynn. Mobile Robots: Inspiration to Implementation,
A K Peters, Ltd., Wellesly, MA, 210-224, 1993.

6 C. I. Ume, J. Ward, and J. Amos. Application of MC68HC11 Microcontroller
For Speed Control Of DC Motor. Journal of Microcomputer Applications,
15(4):373-386, 1992.

7 Motorola Background Information. Fuzzy Logic And Embedded Control. Third
Workshop on _ Neural Networks: Academic/Industrial/NASA/Defense,

WNN92:611-621, 1993.

8 5 Lee et al. A Mars Surface Exploration Vehicle Testbed For Control
Algorithm Verification. Proceedings of ISRAM Conference, Maui, Hl, 1994.

9 5 Lee et al. The Mars Mission Research Center Exploration Vehicle Testbed:
A Platform For System Integration Studies. Proceedings of the AIAA Space
Programs & Technologies Conference, Huntsville, AL, 1994.

10 g Lee et al. A Distributed Architecture For A Mars Surface Exploration
Vehicle Testbed. Proceedings of the ISCA Conference on Computers and Their
Applications in Industry and Engineering, San Diego, CA, 1994.

1 D. Lancaster and H. M. Berlin. CMOS Cookbook: Second Edition, SAMS,
Carmel, Indiana, 256-259, 1993.

12 Motorola. M68HC11 Reference Manual, Motorola Literature Distribution
Center, Phoenix, Arizona, 1991.

18 Motorola. M68HC11 E Series Technical Data, Motorola Literature Distribution
Center, Phoenix, Arizona, 1993.

37

14 Motorola. M68HC11 E Series Programming Reference Guide, Motorola
Literature Distribution Center, Phoenix, Arizona, 1993.

'S Motorola, Inc. M68HC11EVBU Universal Evaluation Board Users Manual.
Motorola Literature Distribution Center, Phoenix, Arizona, 1992.

16 Motorola, Inc. MC68HC11 Pcbugii User's Manual. Motorola Literature
Distribution Center, Phoenix, Arizona, 1992.

38

APPENDICES

39

A. Master Controller Circuit Diagram

40

€

CE6l "2 usItH

30 1| TIIGY]

B3 %0

o

A4

HAa0WNN judwndog] AZig)

3371041INOD 33LSYH JOLVYINDINYA

A3113HA9

31314
[i o2}
RIS
snE Y1va
viaas ot 5
_12]
NIL
4= adA =2
|m\vvn
LEAHY/
a0
o 2
(o ca
30 °q
co <o £ =
»0 va
€0 €4 tg
20 =aa $
10 1ar% o
00 od ia 2
2]
[+1
Mn
or
13
o

sna
SS$3x¥aav

sng
10AAINOD

SN 0ALNOD
vivd AIVEa33d

Yaor
ga0v

0alx
oAl

x3
Lx

SSA
aaga

()

PI0yEIn

a
N
9

135y N1

En

rIyEIH ~

g

13sd NI

en

gza —+

A

41

S08LHWT

4 3573 33Uy CEel 2 USIoy 3150

o v
A3 430WNN Juawnsog| azig]

H¥INTOBINGD d3LSYH 0LV INDINVK

#134y]
/ g _£0s8a>
sna viva
A
ag 4 SIv-009)
sng
ssIsaav
0889 ¥1ov WYy BxM2€
aoa +{ oa ov
7| <0 s1oPEg ——2H 1a 1w |2 /]
k] 24 H[Mﬁk 2a v [
ca S 57" gy €d [
va ;18 +a rv
ca 0so s—2H ca o
~ 3] 2a 153 iﬁﬂ’m—m\ >——§H »a Sv |8
st 262 XYW o 230 P — 7] <@ &2
2t . &
N lr2a nsed e m 2
oo -8 osaL tear e =Sty)lor\m Trll\u/ oty |-y
o}t L1y O/t |y =—{ v1vax =T E A7d 2iv 1k
o—t —%H ovit 1 3T S vivaxs oo 2 el =
o121 m - g ELIT an Im
o Tw L Pirze ray
0O 3] ulcuw\Pﬂul —A +22 |ﬂ|||!wlmu Wlu WW
€ -1
of-£ o T 1 1
ool s I amor
© ot 13}y
O v
Py 2 31 &n 2 . >
o >
° Nap e
0
© adn 0pIHY L <Az
o1 Canva_ 038 >—— IOHY L sng
L i “081NDD
2 €
o>
(S E] T
ven
2 4 Ei van ‘
I L 9LIHEL
(_anvd ooger> wle 3§ rie t_lnﬂ o ¥ rig
1oHy
¢ #19 Pg—— PRE)
1 1 3 P — ¢x @29
o2 2 = T2 2 A 020H¥L €92y ve3Ps
5T ~
arn g ven m_v C 3337%-0005% o
3 2ld ax k)
9 OEETRL i
3A V¥oN 1 _d1iE$-0003%
ST 9159 3315-0006% 3% e v
ZHN2ST6' Y £n
1 ang oN —
i A dr0 8 .

JIA oin

42

[4 30 € 33343 Geol @ usSJoW 1@31dd
o1t v
A3 J8quNN Jusundog] azig)
H3IVI0HINDD ATLSYW HOLYINDINYH

131y

AIWIS P

NOISNIL

V>
aaA
ABY \ﬂ
m_ el 91 NN -9
a10N3 108 ALy
AV —<2vd}
) Av128
16088 ¢y
: snE viv0
MIYVIN3S
5 <5
zazanz 3 LEE
agA
uﬂ_\ tleg tary
9I0¥IHY L T 4 50 www
ad3zE2xvNR e . Sn9—5d s+ (33 2 aan
s a1 1728 023 51 ENndD o
o os21 1721 |5 L
z £n N alE s
o} /18 O/18 arngy POTIHY £ dJ) € [£N ;] 2
o 4 & g ¥13 oa v »Yd
1] O/iL | CA N e i indd &« .
Ot 3}
3 » -23 9909 IHE L
ooy s | o aen sNE_10YLNGD
me— vivad »Jvdad334
n? 2 u:S\—H!d| A 139 ﬂl.Ulmu v [
92 S E—
[t R 1 N ¢ FOOHY L
ot 91 st *13 Jrot
o Al 3 3 <
€2 _ 990+ DHb L
3an
_3492E2XYN DDA 5 =
s 1,24 0728
o—3— [8l orzr tszL Bl
< arn Y0DHV L
o—l% er] 1w ool K
ol< ostL 1L
¥l T v [
5 _22 990+ IHb L
o w
rs 1% |5 o I 8an
1T
= o] & u:a__ﬁd‘ o~ vanbe T ot
PR - o B 22 -15 Lm||/_\
q A
°olt . ozl YOIHPL
o8 anot st gt 12— ot
£3
o1% % e 50 3 i
L N _ van

S5d

43

B. Motor Controller Circuit Diagram

30 1 S LIS &I T USIoH 15180

A
JBAWNN JUBWNDOG| XIS

AINNONAINGD ¥OLOW A0L¥YINIINYH

ETENN 300W
dvaii$ 1008
01 8AS
aaA
3aaw
Ik
63110HBS ERBITES
3] oad
S l.or tad
sn8 viva ot z2] &34
RYEER Hﬂ«.u a9
-2 cad vaoK
3 8aon I3 ot
ada Hm”>\a ouix bay o N
1 3v o3l by
ot
¢2d
92d
=11 ¢3a
rJd T Iay Kialt
£3d v CE)
10 %33 3d
23d b=am
]
03d 534 2%
i 84 HEN LI
=1 L
28] 5ad €34 [4F-
3% cad 23d (2T adn aSA €
8¢ mmm wwm (33 ySOrEIN
o il g
L])
Huﬂ odd
1353 poy - 135y Nt
ra-2 Mt €n
v 921 cvd x3 aSn
S m.ml yvd 1X &
£vd
ssA b
aan
A_lkvm)w 1AS e Wot
A'O i -~
3
%0t Ay
>0t lDT £
ﬁrnxe‘m
o rqm_
aaA 498l ==c> adA
aaA CH)

5

Lo

1

E W
g

aza —
,__j }h__—-“'.

5

o

+ aAa | o
. C0BLHT

45

;
o v
A3 saqunn Jusunseqg] sz 660 ¥DLIINNDI
H3710MLNDD JOLOW ¥OLY NJDINVKH o}
SnL 00 AdI2E2XYN
o—1% /2y 0/3u|—
o gsat 121
2 o7
—‘ulﬂ—! 718 0O/18 ST 3
§1 0/t 1l gy %
29}
» 4not sSNE wivg
RTEN
P I A
-1
- A e
+12 J.IUI..JE
—fmn rn
1 = 9t
anot
Y.LIHY L
3 b
adA
o] v.._U&
aga 0\/\/>\M|. g 4 0 =
01
ven * <Za3)
8 ¥3av3iH R
8 O A2l+ El
L
9
; oaA =
I3 O 4aA . _\
m - A { 1 {
4 [{ { t /
Tar N
LINDAID
010w 01 99157
' 02 —
+—2 6t
0GA O — € al o7
30
agA 0\<$<|l v L [— A0 taA
tan o2 _1g 9l L —AAA0 GoA
9 ot 20
I3 1
8 €t -
75
N a _ _ 93d
o1 M v 3
TUNDLS 54
43a03N3 — i
WNO2 3 _ 0234

46

C. Master Controller Program Listing

47

t'"*'.*Q"'i."'Q.it.'ti"."**.ﬁ'.*tt"t"*".Q"'*'Q'i‘*.*l".'**tﬁ.'
*

* MASTER SOFTWARE FOR MARS ROVER MANIPULATOR
-
tti*t.ttit’iQtﬁ'i*t*tQQt*iit’t'Qttit..'t'*.tiQi.*i*iﬁ'ttt*t'!i".ttt.

»*

*

* Based om:

» 08/19/94 ctO.asm acia in / sci out ;with sequence input ok
e CK.Chao

* Modifications:

11/01/94 mastl.asm Read MAXIN bytes of data & echo to motoxr CPU.
11/07/94 magt2.asm Run main loop until command received from
supervisor. Echo command once then return to main loop
11/08/94 magt3.asm PA7 commands claw upon receipt of Cl command.
C(anything besides 1) results in claw off command. Any other
string is sent out SCI
11/10/94 added lines in INITPA to disable IRQ on pins
PAO, PAl, PA2, PA3.
12/01/94 mastd.asm -- Modified input command structure to
address (one byte hex), theta (four ASCII characters
repragenting a two byte hex) .
12/03/94 mast5.asm -- Receive and echo output £rom motor controllers.
Each motor controller sends the magter address (8), four
ASCII characters representing a two byte hex number (the
motor position in degrees), two ASCII characters
representing the controller mode (closed loop (C0) or open
loop (01, 02, or 03)), and four ASCII characters representing
the command received by the motor (desired motor positon
in degrees.
12/12/94 mast6.asm -- Reaxrange functions to allow for easier
jnclusion of conversion routine. Output printed whenever
flag (ffbkl,££bk2,£fbk3,££bkc) set. Input command syntax
modified to "ipp,iqq, Tttt, fxr.x, +zz.z". Coumand syntax is
verified after receipt. An error message is written to
ACIA if an invalid command is received.
01/03/95 mast7.asm -- Configure PA3 (IC4) as the interrupt pin (on
falling edge) indicating loss of temsion in crane cable.
Interrupt Service Routine (SLAK_ISR) will be called.
Modified putaway routine to take claw all the way to the
top before moving to drop zone.
01/09/95 mast8.asm -- Add routines to search around nominal target for
high spot. After jdentification, 1ift at high spot.
Modify output format to eliminate mode information and
add 0 as prefix and h as suffix to angle information. This
will allow Mathcad plot. Add PRNTDAT call in ACIA_ISR to
print home position after valid input string to add
home position to plot. Added routine fipdit to search
for object around input (theta,r). Moved "docmds™ f£rom main
to new routine.

t"llbl‘lﬂlﬂlttll*‘tllliiiillitt'ﬁ#tit#‘

B96 equ %00110000
R_DATA equ $4000

CR equ $0D
SPACE equ $20

LF equ SOA

ACIA equ $1800
PCHAR equ $03
QCHAR equ $03
TCHAR equ $04
RCHAR equ $05

ZCHAR equ $05
MAXIN aqgu PCHAR+QCKAR+TCHAR+RCHAR+ZCHAR+$04
MAXSCI equ $06

RDPI equ $51
RZERO equ $38B

ZDPI aqu $74

ZZERO equ $FE78

48

AR RNNR

* jump table

'YI2 X222 2 2]
oryg
jmp
org
jmp
org
Jmp
org
imp
org
jmp

(22222 2322

#500ee
ACIA_ISR
#5002
SCIO_ISR
#500e5
SCI1_ISR
#500e8
SCI2_ISR
#500d3
SLAK_ISR

* EEPROM contants

(22222 X242

ORG del_x

FDB 2

ORG del_theta

FDB 8

RATRARR RN

* the variables
T2 XX X222 224
org
rdata
boxl
box2
box3
boxd
boxS
box6
box7
box8
box9
catrl
cntr2
cntr3
cntrd
cntrS
cntré
cntxr?7
cntxr8
cntr9
hex2
gciO_in
scil_in
sci2_in
datain
££fbkec
£fbkl
££bk2
££bk3
£cmdc
foemdl
fomd2
£fomd3
fatop
pitch
roll
theta
radius
height
thl
th2
th3
th3a

AR R A A AN ST iyt aay:

#R_DATA
MAXIN
MAXIN
MAXIN
MAXIN
MAXIN
MAXIN
MAXIN
MAXIN
MAXIN
MAXIN
MAXIN
MAXIN
MAXIN
MAXIN
MAXIN
MAXIN
MAXIN
MAXIN
MAXIN

g BHRBPRREBHBPB PR E g E (2
ano
HHH

*IRQ
*IC3
*Ic2
*IC1

*IC4/0CS

* Search pattern constants
* del_r (half inches)

* del_theta (degrees)

49

th3s
temp
tmplé
clawcmd
stphgt
hgtl
hgta
hgt3
hgtd
hgt5
hgt6
hgt7
hgt8
hgt9
target
try
whole_in
half_in

TN 1 AN
I Rk

i B

stack
SHFTREG RMB
TMP1

B

[+]

rg
del_r
del_theta

(2222222224

input shift register

$4500 * gventually B700
rmb 2
xmb 2

* the code starts hers.

T2 22222 2 J
org
Jmp

$2000
START

’Q.*'*.i."it't"."t.*ﬁ.t’ﬁ";ii"l.'.'*t""*i'."'til*#t"*t.'*-ﬁ'

-

* THE FUNCTION LIBRARY

»

itﬁ'.'*Q'Qi'*'*tif‘.'*Qi'.ﬂ'Q.’*.'*fi'iﬁ'*.*#*.ii'***'*t"tiii"'tt'*

ARREERRT R

* bin2hex -- Separates each character of a hex number and calls outhex.

L2222 2 2 2d

bin2hex pshb
psha
lsxa
lsra
lsra
lara
anda
jsr

pula
anda
isx

pulb
rts

zb2hex

(T2 X2 22 2 22 J

#%00001111
outhex

#%00001111
outhex

* getsci -- if a character has been received on sci port, this character

* retrieves and places in accumulator A.
AR RN RREN
getsci 1ldx #REGBAS
1dab SCSR, X * {f RDRF is 0 then wait
bitb #3520
beq getscl
ldaa SCDR, X

zg sci zrts

' TT2222222 2222 2 2 2
hd HEXBIN(a) - Convert the ASCII character in A
* to binary and shift into shiftreg.

50

FrETYI ISR A48 2

HEXBIN PSHA

PSHB
PSHX
* JSR UPCASE convert to upper case
CMPA #'0°'
BLT HEXNOT Jump if a < $30
CMPA #'9°'
BLE HEXNMB Jump if 0-9
CMPA #'A’
BLT HEXNOT Jump £ $39> a <$41
CMPA #'F*
BGT HEXNOT Jump if a > $46
ADDA #$9 convert $A-SF
HEXNMB ANDA #$0F convert to binary
LDX #SHFTREG
LDAB #4
HEXSHFT ASL 1,X 2 byte shift through
ROL 0,X carry bit
DECB
BGT HEXSHFT ghift 4 times
ORAA 1.X
STAA 1,X
BRA HEXRTS
HEXNOT nop
hd INC TMP1l indicate not hex
HEXRTS PULX
PULB
PULA
RTS
YT EEE]
* onacia -- initializes acia port
P2 XL LR 2]
onacia: ldx #REGBAS
cli * anable IRQ (clear I in CCR)
ldaa OPTION, X
ora #%00100000 * get IRQ to recognize falling edge
staa OPTION, X
1daa #3$03 * master reset of ACIA
staa ACIA * ACIA is at $1800
ldaa #%00010110 * ord,cr3,cr2 = 101 : 8bit 1stop bit
o * arl,cx0 = 10 : & 64 (IRQ enabled)
ora #%10000000 * enable IRQ
staa ACIA
zonacia rts
22212 %22 2)
* ongci -- initializes sci port
'Y Z 2L R]
onsci: 1ldx #REGBAS
ldaa #B96
staa BAUD, X * get baud rate
ldaa #%00001100 *m WAS 00001100 made 00101110
staa SCCR2,X * enable transmit & receive
ldaa #%00000000 *m was 00000000 made 00001000
staa SCCR1,X * get data is 8-bit mode

zonsci rts

E2 X222 2 2 2 2

*» outhex -- converts hex to ASCII and transmits out ACIA porxt

(222222 2 2 3]

outhex cmpa
bge
adda
jar
bra

ge2A: adda
jur

#10
ge2A
#5$30
putacia
zo_hex
#837
putacia

51

zo_hex rts

I3 X222 2222

* outhexs -~
12222222 3 2]
outhexs capa
bge
adda
isx
bra
ge2As: adda
isx
zo_hexs rts

I3 2222 2223)

* putacia --
ARRRA NN TR N
putacia ldab
bitb
beq
anda
staa
zp_acia rts

EZ 222 L 2 22 3

converts hex to ASCII and transmits out SCI port

#10
ge2As
#830
putsci
zo_hexs
#$37
putsci

puts byte in accumulator A out acia port.

ACIA
#502
putacia
#SLL
ACIA+1

* putsci -- puts byte in accumulator A out sci port.

(21222 222 2]

putsci 1ldx
ldab
bitb
beq
anda
staa

zp_sci rts

RewRRRwRRl

#REGBAS

SCSR,X

#$80

putsci « {f TDRE is 0 loop back to putsci
#SEE * (not ready to be sent)

SCDR, X

* geib2h -- Separates each character of a hex number and calls outhexs.

KRR BIRREN

scib2h psha
lsra
lara
lsra
lsra
anda
isx
pula
anda
jsx

zscib2h rts

ARBERRTD AN

* SLODOWN --

E2 2222222 2

SLODOWN psha
pshb
1ldad

SLO1 subd
bne
pulb
pula
rts

#%00001111
outhexs

#%00001111
outhexs

kills time when necessary

#SFFFF
#$0001
SLO1

’t"".itﬁit'ﬂ*ﬁ.'Q".t't."i*'..*i.*.t"ﬁ'ii"'*ti'.""'t"t""ﬁ"

*+ THE FUNCTIONS SPECIFIC TO MASTER OPERATION

*

ﬁ.'.*t".t*..*'i'.'i**.*'tﬁ**‘..’*‘i"*i""'*i'."i"'.i.iit'*.ﬁ*ﬁ"

R RRIR N
* ASC2HEX -~

Converts an ASCIT character (0-9) in accumulator B to a

52

* hex number. This number is returned in accumulator B.

(2222222 2 22

ASC2HEX cmpb #'0
blt zazh
cmpb #'9°
bgt za2h
subb #3530

za2h rts

T332 X222 3

« checkin -- Read input string and verify syntax

'YX 2 2142224

checkin 1ldy #R_DATA
ldaa 0,Y
jsx issign
cupb #'1
bne synerrl
ldaa 1,¥
isx isint
cupb #'1
bne synerrl
1daa 2,Y
jsr isint
cmpb #'1
bne synerrl
ldaa 3,Y
jsr iscomsp
cmpb #'1
bne synerrl
ldaa 4,Y
jar issign
cmpb #'1
bne synerrl
l1daa 5,Y
jar isint
cmpb #'1°
beq set2

synerrl jmp synerr

set2 ldaa 6,Y
jsr igint
cmpb #'1
bne synerr2
ldaa 7,Y
isxr iscomsp
cmpb #'1
bne synerr2
ldaa 8,Y
jsxr issign
cmpb 1
bne synerxr2
ldaa 9,Y
jmsr isint
cmpb #'1
bne synerr2
ldaa 10,Y
isx isint
cmpb #'1
bne synerr2
ldaa 11, Y
jsxr isint
cmpb #'1
bne synerr2
ldaa 12,Y
isr iscomsp
cmpb #'1°
beqg gset3

53

synerxr2 jmp synerr

gset3 ldaa 13,Y
isx issign
cmpb #'1
bne synerr3l
ldaa 14,Y
jsr isint
copb #'1
bne synerr3
ldaa 15,Y
jsxr isint
copb #'1
bne synerr3
ldaa 16,Y
isx isdec
cupb #'1°
bne synerr3
ldaa 17,Y
isx isint
cmpb #'1
bne synerr3
bra satd

synerr3 Jmp synerr

setd ldaa 18,Y
jmx iscomsp
cxpb #'1
bne synerr
ldaa 19,Y
jsr issign
cmpb #'1
bne synerxr
ldaa 20,Y
jar igint
cmpb #'1
bne synerr
ldaa 21,Y
jar isint
cmpb #'1
bne synerr
ldaa 22,Y
jar isdec
cupb 1
bne synerr
ldaa 23,Y
isx isint
cmpb #1
bne synerr

noerr ldaa #'1
staa datain
bra zcheck

synerr jsr wrerx0
ldaa #'0'
staa datain
staa clawemd
bra zcheck

zcheck nop
rts

L2 A X232 222 2]

» docmds -- Move manipulator to commanded position

i 222222222]
docmds ldaa £fomdl
capa #'0°

54

beq
jsx
waitl ldaa
cmpa
beq
bra
adocmds jsr
doeml ldaa
cmpa
beq
isx
wait2 ldaa
cmpa
beq
bra
bdocmds jsr
doem2 nop
1daa
cmpa
beq
jsr
wait3 ldaa
cmpa
beq
ldaa
cmpa
bne
ldaa
staa
staa
staa
bra
cdoemds Jsr
doem3 isr
isx
bset
bset
ddocmds ldaa
staa
zdocmds rts

'YX E L L2 2

* docmds2 --
YT 22D
docmds2 ldaa
cmpa
beq
jsr
wait21l 1ldaa
cmpa
beq
bra
adocmd2 jsr
doem21 ldaa
cupa
beq
isx
wait22 ldaa
cmpa
beq
bra
bdocmd2 Jjsx
doem22 ldaa
cmpa
beq
isxr
wait23 1ldaa
cupa
beq

doeml
outcmdl
££fbkl
#'1
adocmds
waitl
doout
fcmd2
#'0
doem2
ocutcmdl
££fbk2
#'1
bdocmds
wait2
doout

fomd3
#'0
doem3
outcmd3
££bk3
#'1°
cdocxdds
£stop
#'1
wait3
#'0
fatop
femdl
femd2
bdocmds
doout
grip
doout

TFLGL,X #%00001000 * Clear IC4 flag
TMSK1,X #%00001000 * Enable IC4 intexrupt

#'0
datain

Move manipulator to commanded

femd3
#'0
doem21
outcmd3
££bk3
#'1
adocmd2
wait2l
doout
fomd2
#'0'
doem22
outcmd2
££bk2
'Ill
bdocmd2
wait22
doout
femdl
#:0
doem23
outemdl
££bk1l
#'1
cdocmd2

position in reverse order

55

bra
cdocmd2 jsr
doem23 Jsr
iar
ldaa
staa
zdocmd2 rts
(2222222 1 2]

wait23
doout
grip
doout
#'0°
datain

* doout ~~ write ocutput to screen ls necessary.
(2222222224

doout

zdoout

ldaa
suba
adda
suba
adda
suba
adda
suba
copa
beq

ldaa
staa
staa
staa
staa
jar

rts

IZ3 X X2 LT]
* findit -- Search for object around given approximate position. Algorithm

*

* % % % % ¥ % X % ¥ % % N % % ¥ % ¥ @

LA 22 2 22]

£indit

sventrl

sventr2

psha
pshb
pshx
pshy

1dy
ldx
ldaa
staa
iny
inx
cpy
blt

1ay
ldx
ldaa

££bk1l
#3530
££fbk2
#3830
££bk3
#830
££bkc
#$30
#$00
zdoout
#0
££bkl
££bk2
££bk3
££bkc
PRNTDAT

assumes that the beginning (input) point is the beginning of
the search. This point lies at the center of an imaginary
tic-tac-toe board. All nine points are sounded and their
heights (th3 values) are stored in hgtl-hgt9. If the center
point is del_z above the perimeter, then the claw makes a
grab at the center point. If any of the perimeter squares
are del_z taller than the center,
that point becomes the new center and the search pattern is
run again. If two perimeter points are both equal and
taller than the center, then... This process repeats
until...
If (hgtS-del_z > all other hgt values)

Lift at center
Else if (hgti
Case 2:

cntri (i=1:9) are the centers of imaginary tic-tac-toe
boards that will be used in the search for the object.
boxi (i=1:9) are the individual squares of the particular
tic-tac-toe board curresntly being searched.

#rdata * Save rdata to cntrl for later use.
#cntrl

0,Y

0,X

#rdata+#MAXIN
sventrl

#rdata *+ Save rdata to cntr2 for later use.
#cntr2
o,Y

56

gventr3

sventrd

sventrS

gventré

sventr?

sventrs

svcntr9

staa
iny
inx

blt

lay
ldx
ldaa
staa
iny
inx
cpY
blt

lay
ldx
ldaa
staa
iny
inx
cpyY
blt

ldy
ldx
ldaa
staa
iny
inx
cpy
blt

1dy
ldx
ldaa
staa
iny
inx
cpyY
blt

lday
lax
ldaa
staa
iny
inx
cpy
blt

lay
1ldx
ldaa
staa
iny
inx
cpY
blt

ldy
1ldx
ldaa
staa
iny
inx
cpy
blt

0,X

#rdata+#MAXIN
sventr2

#rdata
#cntr3
0,Y
0,X

#rdata+#MAXIN
sventr3

#rdata
#cntrd
0,Y
0,X

#rdata+#MAXIN
sventrd

#rdata
#cntrS
0,Y
0,X

#rdata+#MAXIN
sventrS

#rdata
#cntré
0,Y
0,X

#rdata+#MAXIN
sventr6

#rdata
#cntr?
0,Y
0,X

#rdata+#MAXIN
sventr?7

#rdata
#cntr8
0,Y
0,X

‘#rdata+#MAXIN

sventr8

#xrdata
#cntr9
0,Y
0,X

#rdata+#MAXIN
sventr9d

* gSave rdata to cntr3 for later use.

* Save rdata to cntrd for later use.

~ gave rdata to cntr5 for latexr use.

»* Save rdata to cntré for later use.

* Save rdata to cntr7 for later use.

» Save rdata to cntr8 for later use.

* Save rdata to cntr9 for later use.

57

search

tryl

tzry2

try3

tryd

trySs

try6

nomore
strdata

svrdatl

svrdat2

svrdat3

svrdatd

bra

bne
ldx
bra
cmpa
bne
1dx
bra

bne
1ldx
bra
jmp
ldaa
staa
iny
insx

blt

ldy
ldx
ldaa
staa
iny
inx
cpY
blt

lay
ldx
ldaa
staa
iny

cpy
blt

ldy
1dx
ldaa
ataa
iny
inx
cpy
blt

idy
lax
ldaa

pattbig

#1
try

#rdata
try
#'1
try2
#cntrl
strdata
#'2
txy3
#cntr2
strdata
#'3
tryd
#cntr3
strdata
#4
txyS
#cntrd
strdata
#'S’
txryé
#cntrS
strdata
#'6
nomore
#catré
strdata
giveup
0,X

0,Y

#rdata+#MAXIN
strdata

f#rdata
#boxl
0,Y
0,X

#rdata+#MAXIN
svrdatl

#rdata
#box2
0,Y
0,X

f#rdata+#MAXIN
svrdat2

#rdata
#box3
0,Y
0,X

#rdata+#MAXIN
svrdat3

#rdata
#box4d
0,Y

* Modify cntr values to show spread.

* Set cntr to search around first

* Save cntri to rdata to be searched. If
* all 9 grids have been searched, then
* give up.

* gix square case

* Save rdata to boxl for later use.

* Save rdata to box2 for later use.

* Save rdata to box3 for later use.

* Save rdata to boxd for later use.

58

staa 0,X

iny
inx
cpy #rdata+#MAXIN
blt svrdatd
lay #rdata * gave rdata to box5 for later use.
ldx #boxS
svrdat5 ldaa 0,Y
staa 0,X
iny
inx
cpyY fzrdata+#MAXIN
blt svrdat5
lay #rdata + Save rdata to box6 for later use.
ldx #box6
svrdat6é ldaa 0,Y
staa 0,X
iny
inx
cpy #rdata+#MAXIN
blt gvrdaté
ldy #rdata * gave rdata to box7 for later use.
ldx #box7
svrdat7 ldaa 0,Y
staa 0,X
iny
insc
cpy #rdata+#MAXIN
blt svrdat?
ldy #rdata » Save rdata to box8 for later use.
ldx #box8
gvrdat8 ldaa 0,Y
staa 0,X
iny
inx
cpy #rdata+#MAXIN
blt svrdats
lay #rdata * Save rdata to box9 for later use.
1ldx #box3
svrdat9 ldaa 0,Y
staa 0,X
iny
inx
cpy #rdata+#MAXIN
blt svrdat9
jax pattern * Modify box positions to spread pattern
ldaa #'1 * Close claw
staa clawemd
isx docmds
lay #rdata * gave boxl to rdata for sounding.
ldx #boxl
1drdatl ldaa 0,X
staa 0,Y
iny
inx
cpy #rdata+#MAXIN
blt ldrdatl
1daa #'1 * Sound boxl
staa datain
jsx makecmd

59

ldrdat2

ldrdat3

ldrdaté

ldrdats

dsr
ldad
atd
jex

ldy
ldx
ldaa
staa
iny
inx
cpy
ble

ldaa
staa
jsxr
jar
ldad
atd
Jsx

1dy
ldx
ldaa
staa
iny
inx
cpY
blt

ldaa
staa
jsr
jar
ldad
std
jsxr

lay
1dx
ldaa
staa
iny
inx
cpY
blt

ldan
staa
Jjaxr
isxr
lad
std
isx

ldy
lax
ldaa
staa
iny

cpyY
blt

ldaa
staa
iax
jar

docmdsg
th3s
hgtl
gotop

#rdata
#box2
0,X
0,Y

#rdata+#MAXIN
ldrdat2

#'1
datain
makecmd
docmds
th3s
hgt2
gotop

#rdata
#box3
0,X
0,Y

#rdata+#MAXIN
ldrdat3

#'1
datain
makecmd
docmds
th3s
hgt3
gotop

#rdata
#boxé
0,X
0,Y

#rdata+#MAXIN
ldrdaté

#'1
datain
makecmd
docmds
th3s
hgté
gotop

#rdata
#box5
0,X
0,Y

#rdata+#MAXIN
ldrdat5s

#'1
datain
makecmd
docmds

Save box2 to rdata for sounding.

Sound box2

Save box3 to rdata for sounding.

Sound box3

Save box6é to rdata for sounding.

Sound boxé

Save box5 to rdata for sounding.

Sound box5

60

ldrdatd

ldrdat?

ldrdats8

ldrdat9

1da
atd
jsr

1dy
1ldx
1daa
staa
iny

blt

1daa
staa
imx
isxr
lda
std
jsr

ldy
ldx
ldaa
staa
iny

cpY
blt

ldaa
staa
jsx
jar
ldd
std
jsx

ldy
ldx
ldaa
staa
iny
inx
cpY
blt

ldaa
staa
jsx
jasx
1dd4d
std
jur

ldy
1dx
ldaa
staa
iny
inx
cPY
blt

ldaa
staa
jar
jaxr
ld4

th3s
hgt$sS
gotop

#rdata
#boxd
0,X
0,Y

#rdata+#MAXIN
ldrdatd

#'1
datain
makecmd
docmds
th3s
hgt4
gotop

#rdata
#box?7
0,X
0,Y

#rdata+#MAXIN
ldrdat?

$1°
datain
makecmd
docnds
this
hgt?7
gotop

#rdata
#box8
0,X
0,Y

#rdata+#MAXIN
ldrdats

#'1
datain
makecmd
docmds
th3is
hgt8
gotop

#rdata
#box9
0,X
0,Y

#rdata+#MAXIN
ldrdat$9

#'1°
datain
makecmd
docmds
th3s

Save boxd to rdata for sounding.

Sound boxd

Save box7 to rdata for sounding.

Sound box7

Save box8 to rdata for sounding.

Sound box8

Save box9 to rdata for sounding.

Sound box9

61

sortl

sort2

soxt3

sortd

sortS

sort6

sort?7

sorted

std
isx

ldad
cpd
ble
lad
cpd
ble
lad

ble
144
cpd
ble
ldd
cpd
ble
lad

ble
ldda

ble
lad
cpd
ble
ldad
std
ldd
subd
std
lad
subd
std

subd
std
lad
subd
std
ldd
subd
std
ldd
subd
std
144
subd
std
1ldd
subd
std
lad
subd
std

nop
lda
1ldx
idiv
pshx
pula
pulb
std
1da
1ldx
idiv

hgt9
gotop

hgtl
hgt2
sortl
hgt2
hgt3
sort2
hgt3
hgtd
soxt3
hgtd
hgt5
sortd
hgt5
hgté
sort5
hgté
hgt?
sorté
hgt7
hgt8
sort?
hgt8
hgt9
sorted
hgt9
tmpl6
hgtl
tmp 16
hgtl
hgta
tmpl6
hgt2
hgt3
tmplé
hgt3
hgtd
tmplé6
hgtd
hgt5
tmpl6
hgt5
hgté
tmpl6
hgt6
hgt?
topl6
hgt?
hgt8
tmpl6
hgt8
hgt9
tmpl6
hgt$

#ZDPI
#4

tmpl6
hgtl
tmpl6

* Search all values of hgt to find the lowest
* yalue. Subtract this value from each
* hgt.

* Integer divide each hgt by ZDPI/4 (1/4"%)

62

pula

pulb

std hgtl

144 hgt2

1dx tmpl6

idiv

pshx

pula

pulb

std hgt2

144 hgt3

1dx tmp1l6

idiv

pshx

pula

pulb

std hgt3

lad hgtd

1ldx tmpl6

idiv

pshx

pula

pulb

std hgtd

ldad hgt$

ldax tmpl6

idiv

pshx

pula

pulb

std hgt$s

ldd hgt6

ldx tmpil6

idiv

pshx

pula

pulb

std hgté

1dd hgt7

ldx tmpl6

idiv

pshx

pula

pulb

std hgt7

ldd hgt8

ldx tmpl6

idiv

pshx

pula

pulb

std hgts

1dd hgt9

ldx tmpl6

idiv

pshx

pula

pulb

std hgt9
* Decide whether to:
* (1) Lift at a box within grid.
* (2) Make another location the center of new search pattern.
* (3) Give up.

ldaa #:1°

staa target

63

talll

tall2

tall3l

talld

talls

tallé

tall?

talls

pickup

svrdat

lda
cpd
bge
ldaa
staa
ldda
cpd
bge
ldaa
staa
lda
cpd
bge
ldaa
staa
ldad
cpd
bge
ldaa
staa
1dd
cpd
bge
ldaa
staa
ld4
cpd
bge
ldaa
staa
lda
cpd
bge
ldaa
staa

cpd
bge
ldaa
staa
lda
cpd
bgt
ldaa
inca
staa
jmp

nop
ldy

1daa
ldab
subb
subb

addd
pshb
psha
pulx
ldaa
staa
iny
inse
cpY
blt

isx
isx

hgtl
hgt2
talll
#'2
target
hgt2
hgt3
tall2
#'3°
target
hgt3
hgtd
tall3
#'4
target
hgtd
hgt5
talld
#'5°'
target
hgt$s
hgté
talls
#'6"
target
hgté
hgt7
tallé
#'7
target
hgt7
hgt8
tall?
#'8'
target
hgt8
hgt?9
talls
#'9°
targeat
hgt9d
#3
pickup
try

try
search

#rdata
#MAXIN
target
#3530
#1

#boxl

oo
[

#rdata+#MAXIN

svrdat

wrbox

showmap

Search all values of hgt to £ind the
greatest value of hgt. Set taxget =
the box number of the first occurence
of the greatest value.

* % % %

* Save target box to rdata for pickup.

* Convert target to hex, subtract 1,
* multiply by MAXIN, Add boxl address,
* store in X.

* print search points
* pPrint map

64

ldaa
ataa
isx

ldaa
staa
staa
jar
jaxr
giveup Jjsr
puly
pulx
puldb
pula
rts

(22222 2 2 2 2]

#Iol
clawemd
docmds

‘lll
clawemd
datain
makecmd
docmds
gotop

* gobome -- Return to home position

EX 2222 2222

homept £cc
gohome 1ldy
ldx
ldaa
staa
staa
staa
staa
ldaa
staa
1daa
staa
hd jsr
inse
iny
cpY
blt
* ldaa
* isx
jsr
jar
jsr
* jmx
rts

gohomel

t2 2222 22l s

* gotop —-- Take
AR RRRARAE
psha
pshb
pshx
pshy
ldaa
staa
staa
staa
staa
ldaa
*c staa
1dx
ldaa
staa
inx
ldaa
staa
inx
* ldaa
ldaa
staa

gotop

'+00,+00,+000,+07.0,+03.0°

#R_DATA
#homept
#'1
fomdl
femd2
fcmd3
fcmdce
#'0
clawend
0,X
0,Y
putacia

#R_DATA+#MAXIN
gohomel

#CR

putacia
checkin
makecmd
docmds2

doout

* Open claw to prepare for pickup

* pick up object

claw from current position all the way to the top.

#'1

femdl

fomd2

fomd3

fomdc

#'1

c;awcmd

#R_DATA+#MAXIN-#ZCHAR
*l 1

0,X

#'0°
0,X

#lgl
&0
0,X

* &

Take claw to top

Note +09.0 is out of range

and forces the claw all the way up.

Temporarily make position 00.0

65

inx

ldaa #'.°
staa 0,X
inx
ldaa #'0'
staa 0,X
isx checkin
isxr makecmd
jsx docmds2
puly
pulx
pulb
pula
rts

232222 2 4 2]

* grip -- Activates or deactivates claw

FY2TZ2 222 2]
grip ldx #REGBAS
ldaa clawemd
cmpa #1
beq clawon
clawoff bclr PORTA,X #%10000000
bra zgrip

clawon bset PORTA,X #%10000000
zgrip ldaa #'1

staa ££bke

rts

22222 2 2 2 2]

* inacia -- reads MAXIN characters
'T2T X222 L34

* If '1' then turn claw on

* Otherwise turn claw off
* return

in ACIA. Stores at R_DATA.

inacia Jsr syntax
ldaa #'0°
staa datain
ldaa #'1
*c staa clawemd * close claw when position reached
1lady #R_DATA
1dab ACIA * read ACIA status register
bitb #501 * check LSB, if 1, then new character
beq zinacia * if no new character, return
READIT 1ldaa ACIA+1 * alse read character one
anda #SEL « this changes CCR, not needed hers
staa 0,Y * gtore charater one
jsxr putacia * echo character
iny * increment character pointer
cpy #R_DATA+#MAXIN-#501 * compare pointer to max pointer
bls GETNEXT = {f not all in, goto GETNEXT
ldy #R_DATA * else reset character pointex
bra zinacia * always retuxrn
GETNEXT ldab ACIA * read ACIA status register
bitb #501 * check LSB, if 1, then new character
beqg GETNEXT * repeat until new character in
bra READIT » read and save character
zinacia nop
ldaa #CR
jsx putacia
rts * return
C22 X222 2 24
* init -- initial process for the program. Call this function in the
* £irst step of the main program.
I'YTE2 2222 2]
init ldaa #SPACE »* Without these three lines,
jsx putacia ** approximately 10 charactexrs
isr putacia *+ of nonsense print prior to
* #%+ the first outcmd. ??7?77?77
ldax #REGBAS

66

lay #R_DATA

isx onacia
jsx onsci

jsx INITPA
jax INIVAR

zinit rts

2222222 2 2]

* INITPA -- initializes PORT A (68HC1l1ES)

222222 2 4 34

INITPA 1ldx #REGBAS
ldaa #%10000100
staa PACTL, X
ldaa #%01110000
staa PORTA, X
ldaa #%00001111
staa TFLGLl, X

. *

ldaa #%00001111 *
staa TMSK1,X
bset TCTL2,X #%10101010 *
rts

AR NR

* INIVAR -- Initializes variables
AR RN
INIVAR 1ldy #R_DATA
ldaa #SPACE
INIVARL staa 0,Y

iny
cpy #R_DATA+#MAXIN-#$01
bls INIVAR1
» 1dy #R_DATA
ldaa #'0

staa femdl
staa femd2
staa £femd3
staa fcmdc
staa ££bkl
staa ££bk2
staa ££bk3
staa ££bkc

staa £atop
staa clawemd
144 #$0000
std thl
std th2
std th3
ldaa #:x
ldy #8cio_in
inits0 staa 0,Y
iny
cpyY #sciO_in+#MAXSCI-#501
bls initso
1ldy #gcil_in
initsl staa 0,Y
iny
cpy #8cil_in+#MAXSCI-#$01
bls initsl
lay #s8ci2_in
inits2 staa 0,Y
iny
cpy #8ci2_in+#MAXSCI-#$01
bls inits2
ldaa #0
staa hgtl
staa hgti+l
staa hgt2

staa hgt2+1
staa hgt3

* p0:000,P1:001,P2:010,P3:011

P4:100,P5:101,P6:110,P7:111
reset interrupt flags IC4-IC1l

Enable ICi interrupts

Interupt ICi on falling edge

67

staa hgt3+l
staa hgt4
staa hgtd+l
staa hgt5
staa hgt5+1
staa hgt6
staa hgt6+1
staa hgt?7
staa hgt7+1
staa hgt8
staa hgt8+1l
staa hgt9
staa hgt9+l

ZINIVAR rts

'Y 22222 2

* igcomsp -- Writes

* I' 1 or

'Y2 22522 2 2]

iscomsp ldab #'1°
cmpa #*,
beq ziscom
cmpa #
beq ziscom
ldab #'0

ziscom rts

'1' to accumulator B if character in accumulator A is

¢+ 1 glse writes '0'.

21222 2 2 2 4]
+ isdec -- Writes '1' to accumulator B if character in accumulator A is
* 1.t else writes '0°.
T2 212 22 2 J
isdec 1dab #'1
cmpa # .
beq zisdec
1ldab 40
zisdec xts
FTRZ XX 2 &2
» igint -- Writes 'l1' to accumulator B {f character in accumulator A is
» '1', '2', l3l' D‘l' l5|' '6', |'7|' |8|' |9|' |0|' le‘
* writes '0’'.
PYTEEI LR R &3
igint ldab #'1
cmpa #'0°
beq zisint
cmpa #$'1
beq zisint
cmpa #:2
beq zisint
cmpa #:'3
beq zisint
cmpa #'4°
beq zisint
cmpa #'5"
beq zisint
cmpa #'6"'
beq ziaint
cmpa #'7
beq zigint
cmpa #'8°
beq zigint
cmpa #'9°
beq zisint
ldab #:'0°
zisint rts
AR R R NN RW
* jggign -- Writes 'l' to accumulator B if character in accumulator A is
* '+t or '-' else writes '0'.

68

22222223
issign 1l1ldab #'1°
cmupa '+

beq zissign
cmpa #' -
beg zissign
cmpa #'
beq zissign
ldab #'0°

zissign rts

L2222 22 2 22

* makecmd -- Convert input string into motor commands.
'YX 22222]
makecmd ldaa datain * if data in no good, quit
cmpa #'1
beqg begnmake
Jmp zmakcmd
begmake nop * parse received string into
* * individual strings
1dx #R_DATA
lay #pitch
getp ldaa 0,X * gtore string in pitch
staa 0,Y
inx
iny
cpyY #pitch+#PCHAR
blt getp
inx
1dy #roll
getq ldaa 0,X * gtore string in roll
staa 0,Y
inx
iny
cpy #roll+#QCHAR
blt getq
inx
ldy #theta
getth ldaa 0,X * gtore string in theta
staa 0,Y
inx
iny
cpy #theta+#TCHAR
blt getth
inx
1dy #xradius
getrad ldaa 0,X * gtore string in radius
staa o,Y
inx
iny
cpy #radius+#RCHAR
blt getrad
inx
ldy #height
gethght ldaa 0,X * gtore string in height
staa 0,Y
inx
iny
cpy #height +#ZCHAR

69

blt gethght

makethl ldab theta+#TCHAR-#$01 * Convert theta string to thl (hex)
jsr ASC2HEX * 1's place
ldaa #3500
std thl
1ldab theta+#TCHAR-#502 * 10's place
isx ASC2HEX
ldaa #10
mul
addd thl
std thl
1dab theta+#TCHAR-#503 * 100's place
isx ASC2HEX
ldaa #100
mul
addd thl
std thl * Absolute value ok
ldab theta * If ®-" leave positive
cupb #- * If "+' make negative
beq mkthla + gince motor sign opposite of
144 #50000 * coordinate system sign
subd thl
std thl

mkthla ldaa #'1
staa fomdl

maketh2 ldad radius+#RCHAR-#$01 * Convert radius string to th2 (hex)
copb #'5° * If tenths place >= 5 then
blt mkth2a * use 1/2 in. else truncate.
lad #RDPI
ldx #$0002
idiv
pshx
pula
pulb
bra mkth2b
mkth2a 1ldd #$0000
mkth2b std th2
ldab radius+#RCHAR-#$03
isxr ASC2HEX * 1's place
ldaa #RDPI * Degrees per one inch
mul
addad th2
std th2
1dab radius+#RCHAR-#$04
isx ASC2HEX * 10's place
ldaa #$00
pshb
psha
puly
mkth2e cpy #$0000
beq mkthad
lax #10
mkth2f 1ldd #RDPI * Degrees per one inch
addd th2
std th2
dex
bne mkth2f
dey
bra mkth2c

mkth2d nop

ldab radius * If "-» leave positive

cmpb #r- * If "+' make negative

beq mkth2e + gince motor sign opposite of
ldad #$0000 * coordinate system sign

subd th2

std th2

70

mkth2e 1ldd
addd
std
ldaa
staa

maketh3 ldab
cmpb
blt
1d4d
1dx
idiv
pshx
pula
pulb
bra
mkth3a 144
mkth3b std
ldab
iszr
ldaa
mul
addad
std
ldab
jsxr
ldaa
pshb
psha
puly
mkth3c cpy
beq
1ldx
mkth3f 1ldd
addd
std
dex
bne
dey
bra
mkth3d nop
ldab
cmpb

cmpb
beq
ldd
subd
std
mkth3e 1ldd
addd
std
ldaa
staa

zmakcmd nop
res

AR AR AN

* outcmdl --

22222222 24

outcmdl ldaa
jsr
ldaa
isr
ldaa
jsxr
ldaa

#RZERO
th2
th2
#'1
fomd2

height +#RCHAR-#$01
#'S!’

mkth3a

#ZDPI

#50002

mkth3b

#$0000

th3

height +#RCHAR-#$03
ASC2HEX

#ZDPI

th3

th3
height+#RCHAR-#504
ASC2HEX

#500

#30000
mkth3d
#10
#ZDPI
th3
th3

mkth3f
mkth3c

height
#l+|
mkth3e
*c]
mkth3e
#50000
th3
th3
$ZZERO
th3
th3
#'1
fcmd3

#241
putsci
thi
scib2h
thl+#$01
scib2h
#'0'

Add count/coordinate system offset

Sat command flag

Convert height string to th3 (hex)
If tenths place >= 5 then
use 1/2 in. else truncate.

+*+ 1's place
* Degrees per one inch

* % ¥ * ® %

10's place

Degrees per one inch

If "-" make negative

otherwise make positive

Since motor sign is the same as
otherwise make positive

gince motor sign is the same as
coordinate system sign

Add count/ccordinate system offset

Set command flag

Sends motor 1 command out sci port.

71

staa fomdl

rts
L2222 22222)
* outcmd2 ~- Sends motor 2 command out sci port.
I X232 k22222
outcmd2 ldaa #242
jsx putsci
ldaa tha
jsxr scibah
ldaa th2+#$01
jmr scib2h
ldaa #'0°
staa fomd2
rts
(X2 2222222]
* outcmd3 -~ Sends motor 3 command out sci port.
(2222222 2)
outcmd3 ldaa #243
jsr putsci
ldaa th3
jsx scib2h
ldaa th3+#3$01
jsr scib2h
ldaa #'0
staa £fomd3
rts
(2232 X222 2 2
* pattbig -- Define centers of overall search pattern. These values
* will be used to start
* searches if the first grid search is not successful.
*
* catr2: r = r5 + 3*del r
* theta2 = theta5
* catr3d: ¥ = r5 + 3*del r
- theta3 = theta5 + 3*del_theta
* cntrd: r = r5
b theta3d = theta5 + 3*del_theta
* cntr5: r = r5 - 3*del_r
* theta3 = theta5 + 3*del_theta
* cntr6: r = r5 - 3*del_r
* theta3 = thetas
* cntr7: r = x5 - 3*del_r
* theta3 = theta5 - 3*del_theta
* cntr8: r = r5
* theta3 = theta5 - 3*del_theta
* cntr9: r = r5 + 3*del_r
* theta3 = theta5 - 3*del_theta
AR RN
pattbig psha
pshb
pshx
pshy

* Determine the number of whole & half inchea in 3*del_r.
144 del_r
adad del_r
addad del_r
1ldx #2
idiv
std half_in
pshx
pula
pulb
std whole_in

* Modify r values of cntr3, cntrd4, and catrS5.

72

ldaa
1ldab
subb
std

1ldab
subb
ldaa
mul

addd
std

addd

1dx

idiv
addd
stab
atab
stab
pashx
pula
pulb
adad
stab
stab
stab

ldd
cpd
bne
ldaa
cmpa
beg
ldaa
staa
staa
staa
bra
hafsinl ldaa
staa
staa
staa
ldaa
adda
cmpa
bgt
staa
staa
staa
bra
carrysl ldaa
staa
staa
staa
ldaa
adda
staa
staa
staa
nohafsl nop

#500 * Read string. Convert to hex.
cntrl+#15

#530

tmpl6

cntri+#l4d

#3530

#10

tmplé
tmpl6

whole_in * Add whole_in to hex version of rr string

#10 * Convert new hex value to rr ASCII string

#$30

cntrS5+#15
cntrd+#15
cntr3+#15

#330

cntr5+#14
cntrd+#14
cntr3+#l4d

half_in * {f (half_inm==l) then rr.r = rr.r+.5
#1
nohafsl
cntril+#17
#'5"*
hafsginl
#'S"
cntrS+#17
cntrd+#17
entr3+#17
nohafsl
#'0
cntrS5+#17
cntrd+#17
cntr3+#17
cntrl+#15
#1
#'9°'
carrysl
cntxr5+#15
cntrd+#15
cntri+#ls
nohafsl
#'0
cntr5+#15
cntrd+#15
cntr3+#15
cntri+#14
#1
cntr5+#14
cntrd+#14
centxr3+#14

* Modify r values of cntr7, cntr8, and catrd

144
subd
ldx

idiv
addd

tmplé * lLoad hex version of rr string

whole_in * Subtract whole_in from hex version of rr
#10 * Convert new hex value to rr ASCII string
#$30

73

stab
stab
stab
pshx
pula
pulb
addad
stab
stab
stab

14ad
cpd
bne
ldaa
cmpa
beq
ldaa
staa
staa
staa
bra
hafsin2 ldaa
staa
staa
staa
ldaa
suba
cmpa
blt
staa
staa
staa
bra
carrys2 ldaa
staa
staa
staa
ldaa
suba
staa
staa
staa
nohafs2 nop

* Modify theta values of cntr5,

ldaa
1ldab
subb
std
ldab
subb
ldaa
mul
addd
std
ldad
subb
ldaa
mul
addd
std

subd

subd
subd

cntxr7+#15
cntr8+#15
entr9+#15

#530

cntr7+#14
cntr8+#14
cntrd+#14

half_in
#1
nohafs2
cntrl+#17
#'0°’
hafsin2
#'0'
catx7+#17
cntr8+#17
entr9+#17
nohafal
#'5'
cntx7+#17
cntx8+#17
cntr9+#17
cntrl+#15
#1
#'0°
carrys2
cntr7+#15
cntrB+#15
cntr9+#15
nohafs2
#'9°
cntxr7+#15
cntr8+#15
cntr9+#15
cntrl+#l4d
#1
cntr7+#14
cntr8+#14
cntr9+#14

#3500
cntrl+#ll
#$30
tmplé
cntrl+#10
#$30

#10

tmpl6
tmpl6
cntri+#9
#3530
#100

tmpl6
tmpl6

del_theta

del_theta
del_theta

»

if (half_in==l) then rr.r = rr.x+.5

cntr6, and cntx?
* Read string. Convert to hex.

* % % *

Subtract 3*del_theta from hex version of
theta string. Same as adding and including
sign on theta. Sign ignored since always
negative.

74

lax #100 * Convert hex value to theta ASCII string
idiv

psha

pshb

pshx

pula

pulb

addd #3$30

stab catr5+#9
stab cntr6+#9
stab cntxr7+#9
pulb

pula

ldx #10

idiv

psha

pshb

pshx

pula

pulb

addd #$30

stab cntr5+#10
stab cntr6+#10
stab cntr7+#10
pulb

pula

adaa #3530

stab cntrS+#11
stab cntr6+#11
stab cntr7+#11

* Modify theta values of cntr3, cantr2, and cntr9

1d4 tmplé * Load hex version of rr string
addd del_theta * Add 3*del_theta from hex version of
* * theta string. Same as subtracting and
* including sign on theta. Sign igmored
-

since always negative.
addd del_theta
addd del_theta

1dse #100 * Convert hex value to theta ASCII string
idiv

psha

pshb

pshx

pula

pulb

addd #3530

stab cntr3+#9
stab cntr2+#9
stab cntr9+#9
pulb

pula

lax #10

idiv

psha

pshb

pshx

pula

pulb

addd #$30

stab cntr3+#10
stab cntr2+#10
stab cntr9+#10
pulb

pula

addd #3530

75

stab
stab
stab

isr

puly
pulx
pulb
pula
rts

(T2 22222]

* pattern --
*

* % % ® * ¥ ¥ » @

2222222]

pattern psha
pshb
pshx
pshy

cntr3+#11
cntr2+#l1l
cntr9+#11

wrentxr * Write out the calculated grid centerxs.

Modify box strings to spread pattern. Looking down from the
boom and towards boom end, search pattern looks like

boxl box2 box3
box4 box5 box6
box7 box8 box9

Top row: r = r5 + del_r
Bottom row: r = r5S - del_r
Left Column: theta = thetaS + del_theta

Right Column: theta = theta5 - del_theta

* Determine the number of whole & half inches that r must be modified

144
lax
idiv
std
pshx
pula
pulb
std

del_x
#2

half in

whole_in

* Modify r values of boxl, box2, and box3.

ldaa
ldab
subb
std

ldab
subb
ldaa
mul

addd
std

addd

ldx

idiv
addd
stab
stab
stab
pshx
pula
pulb
addd
stab
stab
stab

lda

#3500 * Read string. Convert to hex.
box5+#15

#3830

tmpl6

boxS+#14

#530

#10

tmplé
tmplé

whole_in * Add whole_in to hex version of rr string

#10 * Convert new hex value to rr ASCII string

#330

box1+#15
box2+#15
box3+#15

#3530

box1+#14
box2+#14
box3+#14

half_in * if (half_in==l) then rr.r = rr.r+.5

76

halfinl

carryl

nohalfl

cpd

bne

ldaa
cmpa
beq

ldaa
staa
staa
staa
bra

ldaa
staa
staa
staa
ldaa
adda
cupa
bgt

staa
staa
staa
bra

ldaa
staa
staa
staa
ldaa
adda
staa
staa
staa
nop

#1
nobhalfl
box5+#17
#'S
halfinl
#'5'
box1+#17
box2+#17
box3+#17
nohalfl
#'0°
box1+#17
box2+#17
box3+#17
box5+#15
#1

#'9'
carryl
boxl1+#15
box2+#15
box3+#15
nohalfl
#'0°
box1+#15
box2+#15
box3+#15
box5+#14
#1
boxl+#14
box2+#14
box3+#14

* Modify r values of box7, box8, and box9

halfin2

lad
subd

1dx

idiv
addd
stab
stab
stab
pshx
pula
pulb
adda
stab
stab
stab

lda
cpd
bne
ldaa

beq

ldaa
staa
staa
staa
bra

ldaa
staa
staa
staa
ldaa
suba

tmpl6
whole_in
#10

#3530

box7+#15
box8+#15
box9+#15

#3$30

box7+#14
box8+#14
box9+#14

half_in
#1
nohalf2
boxS+#17
#'0°
halfin2
#'0
box7+#17
box8+#17
box9+#17
nohalf2
#'S!
box7+#17
box8+#17
box9+#17
box5+#15
#1

* Load hex version of rr string
* Subtract whole_in from hex version of rr

* Convert new hex value to rr ASCII string

* if (half_in==1) then rr.r = rr.r+.5

77

carry2

cmpa
blt

staa
staa
staa
bra

ldaa
staa
staa
staa
ldaa
suba
staa
staa
staa

nohalf2 nop

#'0
carry2
box7+#15
box8+#15
box9+#15
nohalf2
#'9"
box7+#15
box8+#15
box9+#15
box5+#14
#1
box7+#14
box8+#14
box9+#14

* Modify theta values of boxl, boxd, and box7

*

l1daa
ldab
subb
std
ldab
subb
ldaa
mul
adaa
std
1dab
subb
1daa
mul
addd
std

subd

lax

idiv
psha
pshb
pshx
pula
pulb
addd
stab
stab
stab
pulb
pula
ldx

idiv
psha
pshb
pshx
pula
pulb
addd
stab
stab
stab
pulb
pula
addd
stab
stab

#500
box5+#11
#$30
tmplé
box5+#10
#$30

#10

tmpl6
tmpl6
boxS+#9
#$30
#100

tmplé6
tmplé

del_theta

#100

#530

boxl1+#9
boxd+#9
box7+#9

#10

#5$30

box1+#10
boxd+#10
bax7+#10

#$30
boxl+#11
boxd+#11

*

* % % %

Read string. Convert to hex.

Subtract del_theta from hex version of
theta string. Same as adding and including
sign on theta. Sign ignored since always
negative.

Convert hex value to theta ASCII string

78

stab

box7+#11

* Modify theta values of box3, box6, and box9

lad

addd

ldx

idiv
psha
pshb
pshx
pula
pulb
adda
stab
stab
stab
pulb
pula
lax

idiv
psha
pshb
pshx
pula
pulb
addd
stab
stab
stab
pulb
pula
addd
stab
stab
stab

jar

puly
pulx
pulb
pula
rts

AR RRTAER

tmplé

del_theta

#100

#$30

box3+#9
box6+#9
box9+#9

#10

#530

box3+#10
box6+#10
box9+#10

#830

box3+#11
box6+#11
box9+#11

wrbox

*
»
*
*

*

*

Load hex version of rr string

Add del_theta from hex version of
theta string. Same as subtracting and
including sign on theta. Sign ignored
since always negative

Convert hex value to theta ASCII string

Print search box coordinates to screen

* putaway -- Move claw to drop location and open.

e RAEw kR

droppt £cc
putaway nop

'+00,+00,~-000,+10.5,-03.5"

%) new stuff to take claw to top before approaching drop point

* 1ldx
ldaa
inx
cpx
blt

:

ldaa
staa
staa
staa
staa
ldaa
staa
ldx

* % % * ¥ % % * * % ¥ »

#R_DATA
0,X

#R_DATA+#MAXIN
debl

#'1
£emdl
£fcmd2
fcmd3
femde
#'1
clawcmd

* Take claw to top

#R_DATA+#MAXIN-#ZCHAR * Note +09.0 is out of range

79

® % % % % % ¥ % % % % % ¥ % * % ¥ % ¥

ptaway2

ldaa
staa
inx
ldaa
staa
insk
ldaa
staa
inx
ldaa
staa
inx
ldaa
staa
jsxr
isr
Jar

1dy
ldsx
ldaa
staa
staa
staa
staa
ldaa
staa
ldaa
staa
inx
iny
cpY
blt
jsxr
jsr
jsr
jex
rts

ARRANR A AN

* PRNTDAT -- OUTPUT RELEVANT DATA TO SCREEN

E2 22X 22 R L L]

PRNTDAT

prthl

prthlz
*p

psha
pshb
pshx
pshy

ldaa
isxr
lax
ldy
ldaa
jsr
iny
cpY
bne
ldaa
Imsx
ldaa
jesxr
nop
cpyY
bls

ldaa
jsxr
isx

! end new stuff

* Go to

#R_DATA+#MAXIN
ptaway2
checkin
makecmd
docmds

doout

#0

putacia
#REGBAS
#scio_in
0,Y
putacia

#3ci0_in+#MAXSCI-#2
prthlz
#'h'
putacia
#SPACE
putacia

#8ci0_in+#MAXSCI-#501
prthl

#SPACE
putacia
putacia

* and forces the claw all the way up.

drop point

* added for plot
* added for plot

* mode info removed for plot

80

* ldaa

* jax
lday

prth2 ldaa
Jsr
iny
cpyY
bne

hd jsr
ldaa
jsr

prth2z nop

*p cpyY
bls

ldaa
isx
jsr

ldaa
jsr
ldy
prthl ldaa
isx
iny
cpy
bne
* ldaa
* jsx
ldaa
isxr
prth3z nop
*p cpY
bls

ldaa
isr
isx

prclw ldab

itsoff 1l1ldaa
isxr
ldaa
isx
ldaa
imx
ldaa
imsr
ldaa
isr
ldaa
imsx
jar
bra
itson ldaa
jsr
ldaa
jsr
ldaa
jsr
ldaa
jsr
ldaa
jar
ldaa
Jsx
ldaa

* % % % * % % % % ¥ ¥

* % % % % % % ¥ ¥ % ¥

#:'0° * added for plot
putacia * added for plot
#scil_in

0,Y
putacia

#scil_in+#MAXSCI-#2
prth2z
#'h' * added for plot
putacia
#SPACE
putacia

#8cil_in+#MAXSCI-#$01 * mode info removed for plot
prth2

#SPACE
putacia
putacia

#'0’ * added for plot
putacia * added for plot
#8ci2_in
0,Y
putacia

#8ci2_in+#MAXSCI-#2

prth3z

#'h' * added for plot
putacia

#SPACE

putacia

#sci2_in+#MAXSCI-#5$01 * mode info removed for plot
prth3

#SPACE
putacia
putacia

PORTA, X
itson
#'0'
putacia
#'0'
putacia
‘lpl
putacia
#'e’
putacia
#'n’
putacia
#SPACE
putacia
putacia
ZPRNTDT
#'1
putacia
#'Cc
putacia
#'1
putacia
#'o0'
putacia
#'s’
putacia
#'e’
putacia
#r'a

81

* jar putacia

ZPRNTDT ldaa #CR
Jjmxr putacia

puly
pulx
pulb
pula
rts

(22222222 2]
* ghowmap -- print depth map to screen (3x3 grid)

(X2 L2222 A2

showmap psha

pshb

pshx

pshy

ldaa hgtl
Jjer binZlhex
ldaa hgtl+l
jsr bin2hex
ldaa #SPACE
isx putacia
ldaa hgt2
isx bin2hex
ldaa hgt2+1
jsr bin2hex
ldaa #SPACE
jex putacia
ldaa hgt3
jsx bin2hex
ldaa hgt3+1
isr bin2hex
ldaa #CR

isr putacia
ldaa hgtd
jar bin2hex
ldaa hgtd+1
jsxr bin2hex
ldaa #SPACE
isr putacia
ldaa hgt$s
jer bin2hex
ldaa hgt5+1
jex bin2hex
ldaa #SPACE
jsr putacia
l1daa hgt6
jsx bin2hex
ldaa hgt6+1
jsr bin2hex
1daa #CR

isx putacia
ldaa hgt?
Imx bin2hex
ldaa hgt7+1
jsr binlhex
ldaa #SPACE
jar putacia
ldaa hgt8
jsr binlhex
1daa hgt8+1
jsr bin2hex
ldaa #SPACE
jsx putacia
ldaa hgt9
isr bin2hex

82

ldaa
jar
ldaa
jsx
ldaa
jsr
1daa
jsr

puly
pulx
pulb
pula
rts

(222 X2 R 212 J

hgt9+1l
binZhex
#CR
putacia
target
putacia
#CR
putacia

* gyntax -- print input

(T2 32 XXX L2 2]

syntax nop
1daa
isr
ldaa
jsr
ldaa
isx
ldaa
isx
ldaa
isx
ldaa
isx
ldaa
isr
ldaa
isx
ldaa
jar
ldaa
jsxr
ldaa
jasx
ldaa
jsxr
ldaa
jsr
ldaa
ijsx
1daa
jsx
ldaa
jsx
ldaa
isx
ldaa
jsxr
ldaa
isr
ldaa
isr
ldaa
isx
ldaa
jsr
ldaa
jsr
ldaa
jsr
ldaa
jar

#lﬁl
putacia
#Ipl
putacia
#Ipl
putacia
#,
putacia
#'4
putacia
*lq!
putacila
'lql
putacia
#l')
putacia
#'8
putacia
#'c
putacia
#'t
putacia
#e
putacia
*l' 1]
putacia
#:a°
putacia
#'x
putacia
#'
putacia
#.
putacia
#'x’
putacia
‘l' 1
putacia
#'8
putacia
#'z
putacia
#'z
putacia
#'.
putacia
#'z
putacia
#CR
putacia

command syntax to screen

83

rts

t2 2 X222 2 23)

*+ th3a2th3s() - Converts 4 ascili bytes in th3a to 2 hex bytes in thias.

L2222 2 22)

th3a2th3s nop

psha
ldaa th3a
jar HEXBIN
ldaa th3a+#1
isx HEXBIN
ldaa SHFTREG+#1
staa th3s
ldaa th3a+#2
isr HEXBIN
ldaa th3la+#3
jar HEXBIN
ldaa SEFTREG+#1
staa thas+#1
pula
rta
(T2 XIZXX2 22 2]
* th32hgts() - Converts 2 hex bytes in th3 to 4 ascii
* bytes in hgts (fihh.h).
T2 22222 24
th32hgts nop
rts
'TXZ2 2222 2)
* wrbox -- print command lines for nine search points.

AREEN RN RN

wrbox psha

pshb
pshx
pshy
1dy #boxl
wrboxl ldaa 0,Y
isx putacia
iny
cpy #box1+#MAXIN
blt wrboxl
ldaa #CR
jaxr putacia
1dy #box2
wrbox2 ldaa 0,Y
jsr putacia
iny
cpy #box2 +#MAXIN
blt wrbox2
ldaa #CR
isr putacia
ldy #box3
wrbox3 ldaa 0,Y
jsr putacia
iny
cPY #box3 +#MAXIN
blt wrbox3
ldaa #CR
jar putacia
ldy #box4
wrbox4 ldaa 0,Y
jar putacia
iny
cpy #box4 +#MAXIN

84

blt wrbox4

ldaa #CR
iaz putacia
ldy #box5
wrbox5 ldaa 0,Y
jsr putacia
iny
cpy #box5+#MAXIN
blt wrbox5
ldaa #CR
jsx putacia
ldy #box6
wrbox6 ldaa 0,Y
isx putacia
iny
cpyY #box6+#MAXIN
blt wrbox6
ldaa #CR
isr putacia
1dy #box7
wrbox7 ldaa 0,Y
isxr putacia
iny
cpy #box7 +#MAXIN
blt wrbox7
ldaa #CR
jsx putacia
lay #box8
wrbox8 ldaa 0,Y
jsr putacia
iny
cpy #box8 +#MAXIN
blt wrbox8
1daa #CR
jaxr putacia
ldy #box9
wrbox9 ldaa 0,Y
jsr putacia
iny
cpy #box9+#MAXIN
blt wrbox3
ldaa #CR
isx putacia
puly
pulx
pulb
pula
rts
E2 22X 22222]
* wrentr -- print command lines for nine search grid centers.

EX I AR 2223

wrcentr psha

pshb

pshx

pshy

ldy #cntrl

wrcntrl ldaa 0,Y

jsr putacia

iny

cpy #cntrl+#MAXIN

85

wrcntr2

wrcntr3

wrcntrd

wrentrS

wrentr6

wrentr7

wrcntr8

wrentr9

blt
ldaa
jar

lay
ldaa
jsr
iny
cpy
blt
ldaa
jexr

ldy
ldaa
jsr
iny
cpY
blt
l1daa
isx

lay
ldaa
isx
iny
CPY
blt
ldaa
jax

ldy
ldaa
jar
iny
cpy
blt
ldaa
jar

1dy
ldaa
jsr
iny
cpy
blt
ldaa
jsr

ldy
ldaa
jaxr
iny
cpY
blt
ldaa
Jsr

1ldy
ldaa
isx
iny
cpy
blt
ldaa
isxr

ldy
ldaa

wrcntrl
#CR
putacia

#cntr2
0,Y
putacia

#cntr2+#MAXIN
wrcntzrd

#CR

putacia

#cntr3
0,Y
putacia

#cntr3+#MAXIN
wrentr3

#CR

putacia

#cntrd
0,Y
putacia

#cntrd+#MAXIN
wrcntrd

#CR

putacia

#cntrs
0,Y
putacia

#cntrS+#MAXIN
wrcntrS

#CR

putacia

#cntré
0,Y
putacia

#cntr6+#MAXIN
wrentx6

#CR

putacia

#cntx?
0,Y
putacia

#ontr7+#MAXIN
wrentr?

#CR

putacia

#cntxs
0,Y
putacia

#cntr8+#MAXIN
wrentr8

#CR

putacia

#cntr9
0,Y

86

jaxr putacia

iny

cpy #contr9+#MAXIN
blt wrcontr9

ldaa #CR

jsx putacia

puly
pulx
pulb
pula
rts

AANRRR TN AR

* wrerr0 -- "syntax errox”
ES 2222222 3]

wrerx0 nop

ldaa #'w
isxr putacia
ldaa #'R'
isx putacia
ldaa #'B
jaxr putacia
ldaa #'R'
jsr putacia
ldaa #'R’
jsr putacia
1daa #'0
jsr putacia
ldaa [A
jar putacia
ldaa #SPACE
isr putacia
ldaa #SPACE
isr putacia
ldaa #'s’
isx putacia
ldaa #'y’
jar putacia
ldaa #'n'
isr putacia
ldaa #'t
jsr putacia
ldaa #'a’
jsr putacia
ldaa #'x’
isxr putacia
ldaa #SPACE
isr putacia
ldaa #'e!’
jsx putacia
ldaa #'c'
jsr putacia
ldaa #'r'
jar putacia
1daa #'0’
isxr putacia
ldaa #'r'
isx putacia
ldaa #CR
jar putacia
rts

FSTOTEPTTpREarpeepeeee P T R TETE TR SR T LI L L SR AL AL b bbb ddoleh ol
-
* THE INTERRUPT SERVICE ROUTINES

*
'.i'*'.t't.'t"t".i*Q"’*'Q.*'iQ.tiiti'*ﬁ'*."'i".‘ﬁt"i’i***i*i'*t

87

L2222 22 2 22

* ACIA_ISR -- Interrupt service routine occurs when ACIA input received.

HARANTRNRNN

ACIA_ISR nop

jsxr inacia
jar checkin
»* jar makecmd
ldaa datain
cmpa #'1
bne zacia
jar PRNTDAT * print
zacla rti
T 222222 2 2]
* SCIO_ISR -- Interrupt service routine
AR RERR AR
SCIO_ISR nop
o ldaa #'A
* jaxr putacia
ldx #REGBAS
belr PORTA,X #%01110000
isx getsci
b isr putacia
1dy #SFFFF
getsci0 dey
beq ZSCIO0
ldab SCSR,X
bitb #3520
beq getsci0
ldaa SCDR, X
* jsr putacia
cmpa #S¥F0
bne ZSCI0
GETEMO 1ldy #s8ciO_in
8ci0 jar getsci
cmpa #SFO
beq GETEMO
staa o,Y
* jar putacia
iny
cpy #8cio_in+#MAXSCI-#501
bls scio
* ldaa #SPACE
* jsr putacia
* ldaa #'0
* imsx putacia
* ldaa #CR
* isr putacia
ldaa #'1
staa ££fbk1l
ZSCI0 ldaa #%00000001
staa TFLGL, X
ldaa PORTA, X
ora #%01110000
staa PORTA, X
rtd
FZ2 X2 R 1222 d
* SCI1_ ISR -- Interxupt gervice routine
EXI21IZE2 2 LR)
SCI1_ISR nop
* ldaa #'B’
* jsr putacia
1dx #REGBAS
belr PORTA,X #%01100000
jar getsci

home position before mansuver.

occurs when SCI0 input received.

* read trigger character & discard

* Y = $FFFP
* Y=Y -1
* {f Y=0 then return

* if (character not received) then
* goto getscil

* read received character
* {£ (char != FO) then return

* read and store MAXSCI characters
* echo characters, space, 0, CR

Clear IC3 bit (PAO)
PA6,PAS5,PAd
P0:000,P1:001,P2:010,P3:011
P4:100,P5:101,P6:110,P7:111

* % % %

occurs when SCI1 input received.

* read trigger character & discarxd

88

C-Q

b jsx putacia
ldy #SFFPF

getscil dey
beq Z8CIl
ldab SCSR, X
bitb #$20
beq getscil
ldaa SCDR, X

* jsr putacia
cmpa #SFO
bne ZSCI1

GETEM1 ldy #scil_in

scil isx getsci
cmpa #SFO
beq GETEM1
staa 0,Y

- isz putacia
iny
cpy #8cil_in+#MAXSCI-#$01
bls scil

* ldaa #SPACE

* isr putacia

* ldaa #'1

* jszr putacia

» ldaa #CR

* jsx putacia
ldaa #'1
staa ££bk2

ZscIl ldaa #%00000010
staa TFLG1,X
ldaa PORTA,X
ora #%01110000
staa PORTA, X
rti

PXE 2222 R 24

* SCI2_ISR -- Interrupt service routine

'Y 2 2222 2 24

SCI2_ISR nop

- ldaa #'Cc

* isx putacia
1ldx #REGBAS
beclr PORTA,X #%01010000
jar getsci

* jsr putacia
ldy #SFFFP

getaci2 dey
beq ZSCI2
1dab SCSR, X
bitb #3520
beq getsci
ldaa SCDR, X

* jar putacia
cmpa #3FO0
bne ZSCI2

GETEM2 1ldy #sci2_in

aci2 jar getsci
cupa #$FO
beq GETEM2
staa 0,Y

* jsxr putacia
iny
cpy #sci2_in+#MAXSCI-#501

* *

* & % »

Y = $PFFP
Y=Y -1
if ¥Y=0 them return

if (character not received) then
goto getscil

read received character

if (chaxr != FO) then return

read and store MAXSCI characters
echo characters, space, 0, CR

Clear IC2 bit (PAl)

PA6, PAS,PAd
P0:000,P1:001,P2:010,P3:011
P4:100,P5:101,P6:110,P7:111

occurs when SCI2 input received.

read trigger character & discard
Y = SFFFF

Y=Y-1

if Y=0 then return

if (character not received) then
goto getscil

read received character

if (char != F0) then returm

read and store MAXSCI characters
echo characters, space, 0, CR

89

bls sci2
* ldaa #SPACE
o isx putacia
* ldaa #'2'
hd isx putacia
hd ldaa #CR
* jaxr putacia
1daa #'1
staa ££bk3
Z8CI2 ldaa #%00000100
staa TFLG1, X * Clear IC1 bit (PA2)
ldaa PORTA, X * PA6,PAS,PAd
ora #%01110000 * p0:000,P1:001,P2:010,P3:011
staa PORTA, X * P4:100,P5:101,P6:110,P7:111
rti
22222222 2}
* SLAK_ISR -- Interrupt gervice routine occurs when PA3 goes low.

-
EXI 222222)

SLAK_ISR ldx

breclr
Jmp

aslak bclr
ldaa
isr
ldaa
isx
ldaa
isx
ldaa
jar
ldaa
jar

* Wait for reply.

ldx
beclr
isx
ldy
getslk2 dey
beq
1dab
bitb
beq

ldaa
cupa
bne

GETSLK3 1ldy
8lk2 jsxr
cmpa
beq
staa
iny
cpY
bls
ZSLK2 idaa
staa
ldaa
ora
staa

This occurs whenever cable tension goes slack.

#REGBAS

PORTA,X #%00001000 aslak

zslak
TMSK1,X #%00001000

%243
putsci
#'s’'
putsci
#'7T
putsci
#'0
putsci
#'p
putsci

Update scil_in.
#REGBAS
PORTA, X #%01010000
getsci
#SFFFP

ZSLK2
SCSR, X
#3520
getalk2

SCDR, X
#3F0
ZSLK2

#sci2_in
getsci
#SFO
GETSLK3
0,Y

#sci2_in+#MAXSCI-#501

slk2

#%00000100
TFLGL, X
PORTA, X
#%01110000
PORTA, X

* above lines taken from sci2_isr

*

* * % *»

* Continue only if PA3 is low.

Disable IC4 interrupt

* write to SCI to stop motoxr 3

read trigger character & discard
Y = $FFFF

Y=Y -1

if Y=0 then return

* {f (character not received) then

* * % %

goto getslk2

read received character
if (char != F0) then return

read and store MAXSCI characters
echo characters, spacs, 0, CR

Clear IC1 bit (PA2)
PA6,PAS5,PAd
P0:000,P1:001,P2:010,P3:011
P4:100,P5:101,P6:110,P7:111

90

jar

doout

** Convert received position in sci2_in (ASCII) to desired th3 (ASCII)
* gtrip th3a from sci2_in

ldaa
staa
ldaa
staa
ldaa
staa
ldaa
staa

aci2_in
th3a
sci2_in+#1
th3a+#1
sci2_in+#2
th3a+#2
acil_in+#3
th3a+#3

* Convert th3a to th3s

jsr
lad
std

th3a2th3s
this
tmpl6

* Increase height by .5" to 1" to

lad
subd
std
lda
ble
ldaa
staa
bra
ldaa
staa
ldd
subd
std

negthls

th3cont nop
1ldx
ld4d
idiv
pshb

ld4d
addd
std
dex
bne

stpl

pulb
ldaa
mul
cpd
bge
nop
ldaa
cmpa
beqg
bra
nop
ldaa
cmpa

angllt

anglge

bra
casel nop
144
addd
std
1d4
1dx

th3s d
#ZZERO

tmpl6

tmplé *
negth3is *
*l L]

stphgt

th3cont

#l_l

stphgt

#$0000

tmpls

tmplé6

#ZDPI bd
tmpl6

#0
#ZDPI *
tmpls hd

stpl

#2DPI
anglge

stphgt
#l-l
case3
case2

stphgt
#l_l
casged
casel

restore tension.
Convert th3s to angle from ZZERO

If angle is negative, take absolute
value and set flag (stphgt) to '-'

Divide angle by ZDPI, to determine
ZZERO

* Calculate absolute value of angle

that corresponds to number of whole
inches

Recall remainder (R)
If 2*R<ZDPI then
If (angle below zero) then
goto casel

else
goto casel
Endif
else
If (angle o zerc) then
goto cased
else
goto casel
Endif
Endif

tmplé = tmpl6 + 1.5*ZDPI

timpl6
#2ZDPI
tmpl6
#2DPI
#2

91

casel

casgse3

cased

stp2

stp3

stpd

zslak

idiv
pshx
pula
pulb
addd
std
bra
nop
ldd
addd
std
bra
nop
1ldd

jidiv
pshx
pula
pulb

std
14d
subd
atd
bra
nop
bra

ldaa
cmpa
beq
ldd
addd
std
bra
1dd4
subd
std
std

ldd
addd
std

ldaa
staa
staa
nop

ldaa
staa
rti

tmpl6
tmpl6
stp2

tmplé6
#2ZDPI
tmpl6
stpd

#ZDPI
#2

tmplé
tmplé
#0
tmpl6
tmpl6
stp2

stp2

stphgt
#l_!
Btp3
#ZZERO
tmpl6
th3
stp4d
#ZZERO
tmplé
th3
tmplé6

th3
#ZDPI
th3

#'1
fatop
£femd3

#%00001000
TFLG1,X

tmpl6é = tmpl6 + 1.0*ZDPI

tmplé = tmpl6é - 0.5*2DPI

tmpl6 = tmplé

* * % *

* »

»

Convert angle from Z coordinate system
to absolute motor angle by adding angle
to ZZERO if positive and subtracting
angle from ZZERO if negative.

Add an additional inch to height
so that clay can be pinned instead
of scooped.

set stop flag

set new command3 flag

reset interrupt £lag IC4

"'ﬁ’ti*t'*'iQ’.*tt*tQ*t'ﬁtQt"*"t‘.i"..Q.i"..ﬁﬁ.*"."*t."i't.*'

*

* THE MAIN PROGRAM

w*

tiifit.f.*iﬂitﬁ*t"ﬁt."i*'.'..'tﬁﬁ"'t""ﬁ'i'.'*.‘..".t'.f.*.‘tt"'ﬁ*i*

START

zmain

1lds
isx
jesr

ldaa
cupa
beq

ldaa
cupa
beq

ldaa

#atack
init
gohome

datain
#'1
mna
££fbkl
#'1
mma
££fbk2

92

mainl

main2

cmpa

ldaa
cmpa

bra
bra

ldaa

beqg
jsr
jmp
nop
jsr
iex
isx
jar
jmp

jmp

#'1
mna
££fbk3
#'1
mna
zmain
mainl

datain
#tll
main2
doout
zmain

docmds
£indit
putaway
gohome
zmain

zmain

* unsolicited feedback received

93

D. Motor Controller Program Listing

94

(222 X2 2 1 22)

RAXNARR TR

* MTR9.ASM -- Must be linked with MTR1INC.ASM
(222 R 2 23]

L2 2Ai 22222 2]

PORTA pins:

0: low bit in 2 bit CPU address
Read from DIP switch 1.

1: hi bit in 2 bit CPU address
Read from DIP switch 1.

2: Q input from 74LS74. Driven hi
by index pulse. Driven lo
by reset CLR (lo-hi on PB7)

3: Step (5210)

4: Direction (5210)

5: Write Input (LS7166)

6: Read Input (LS7166)

7: Contxol/Data Input (LS7166)

PORTB pins:
7: lo-hi clears 74LS74 (CLR1l)

7/18/94 -- RMB

Added routine to seek index (hcme
position) and reset counter.

Reads PA2 and steps is not high.
When high, toggles CLR on 74LS74
(PB7).

10/18/94 -- RMB (mtr2.asm)

Added SCI Interrupt Service Routine
to accept incoming command only if
fa or f£f1 ia £first character.

10/19/94 -- RMB (mtr3.asm)
Added small, medium, and large step option

11/15/94 -- RMB (mtrd.asm)
Repaired home sesk on power up. Routine disturbed by s/m/l1 option.

11/16/94 -~ RMB (mtr5.asm)

Modified input command format to a one byte address

and four bytes repraesenting

the ascii version of a hexadecimal number of steps.

During the SCI_ISR, the command is check to ensure it is valid.

A flag is set to show that a new command has been received.

During the main loop, this command is interpreted and sent to

the motor. Each time a command is executed, a ASCII string is output
consisting of & (master address, "£0"), six characters repregsenting
the hex value of the count (512 counts / 360 degrees), and four
characters representing the issued command.

11/28/94 -- RMB (mtr6.asm)

Make input command and output count in degrees. Appropriate
conversions must take place in code (400 steps/360 degrees and
360 degrees/512 counts). Position output is limited to a two
byte hex number (represented by four ASCII characters). Maximum
and minimum values of theta are stored as lim min and lim_max.
Theta_d is forced to remain within this range.

11/29/94 -- RMB (mtr7.asm)

Controller can operate closed loop (using encoder feedback) or
open loop (using estimated theta). On power-up, mode is closed
loop. Mode (0 or c) is echoed with theta and command. Cause
(1: nonchanging count, 2: nonzero at startup, 3: unreasonable
variation between actual and estimated count)

12/8/94 -- RMB (mtr8.asm)
Pause after two address output to allow master

95

»
*
»
*
»
*
»
»*
E]
-
»
-
*
*
*
L]
-
t 4
*
3
»*
*
*
*
*
*
*
*
*
*
*
*
*
-
*
*
»
*
t 3
*
*
*
E 3
*
*
*
*
*
*
*
*
*
*
*
*
»
*
L4
»
*
»
»
»
w

Modified sci_isr to allow stop command (address,3S,***). Modified
STEPIT routine to check for new command before avery step. If new

routine resets. If new command is STOP,

Modified estimated theta (in STEPIT) to

FFFF

Fl

0000

00E1

mtri: OBFF mtr3: OBFF
mtr2: F2 mtr3: F3

mtr2: 0000 mtxr3: F1F0
mtr2: 0276 mtr3: 0000

- hardware time to select port.
]
* 12/19/94 ~- RMB (mtr9.asm)
»
*
* command is received,
- theta_d is set to theta.
bl allow for an interrupt during motion.
COMSIZE equ $0004
R_DATA equ $0100
CR egqu $0D
LF aqu $0A
org R_DATA
rdata rmb 4
tdata rmb 1
byte2 rmb 1
bytel rmb 1
byte0 rmb 1
theta_d rmb 2
dxflag rmb 1
fatop rmb 1
theta rmb 2
delta_th rmb 2
mode rmb 1
modeflag rmb 1
theta_e b 2
theta_o rmb 2
cnterr rmb 2
temp rmb 2
tmpl6 rmb 2
steps rmb 2
SHFTREG rmb 2
TMP1 rmb 1
STACKAREA rmb 30
STACKTOP rmb 1
ORG $b700
waitent rmb 2
ADDRESS rmb 1
lim_min rmb 2
lim max rmb 2
MAXERR rmb 2
ORG $b600
Jjmp $4000
ORG $b604
jmp SCI_ISR
ORG waitcnt
FDB $08FF * M#§ mtrl:
ORG ADDRESS
FCB $F3 * M# mtrl:
ORG lim min
FDB $F1FO0 * M# mtrl:
ORG lim_max
FDB $0000 * M# mtrl:
ORG MAXERR
FDB $0010
ORG $fffe
FDB $b600
ORG $££46
FDB $b604

* EPROM begins at $D000.

ORG $D000

96

jmp STARTUP

INIT 1dx #REGBAS
jsr INITA
jsr INITOP
jsr ONSCI
jsr GOHOME
jsr INITVAR
cli
rts

AR ENR AR
*INITVAR -- Initialize variables
HEWNRENRTEN
INITVAR ldaa #0
staa rdata
staa rdata+l * rdata:rdata+l = 0
ldaa #'0°'
staa dxflag
staa fatop
staa modeflag * modeflag = '0°
ldaa #'c’
staa mode * mode a ‘'c’
lada #o0
std theta_e * theta_e:theta_e+l = 0
std theta_o * theta_o:theta_o+l = 0
rts

ITIT T Y
*INITA -- MAKE PINS 3 & 7 OF PORTA OUTPUTS
REEBRE NN
INITA ldaa ¥%10001000

staa PACTL,X

rts

* INITIALIZE THE OPTICAL ENCODER
* COUNTER CHIP (LS7166)
INITOP jsr RSTCNTR

jsr SETQR

jsxr SETICR

rts

* RESET COUNTER TO ZERO ON STARTUP
RSTCNTR psha
pshb
pshx
pshy
ldx #REGBAS
ldaa #%11111111
staa DDRC,X
ldaa #%00000100
staa PORTC,X
jsr WRREG
puly
pulx
pulb
pula
rts

* TOGGLE WRITE BIT TO WRITE BYTE ON
* PORTC TO LS7166.
WRREG psha

pshb

pshx

pshy

ldx #REGBAS

ldaa PORTA,X

97

ora #%11100000
staa PORTA,X
anda #%11011111
staa PORTA,X
ora #%11100000
staa PORTA,X
puly

pulx

pulb

pula

rts

* SET QUADRATURE REGISTER FOR X1
* OPERATION

SETQR

psha

pshb

pshx

pshy

1ldx #REGBAS
ldaa #%11111111
staa DDRC,X
ldaa #%11111101
staa PORTC,X
jsxr WRREG
puly

pulx

pulb

pula

rts

* SET INPUT CONTROL RESIGTER
* ENABLE INPUTS A & B
SETICR psha

* turn SCI on.

ONSCI

pshb

pshx

pshy

1dx #REGBAS
ldaa #%11111111
staa DDRC,X
ldaa #%01001000
staa PORTC,X
jsr WRREG
puly

pulx

pulb

pula

rts

psha

pshb

pahx

pshy

1dx #REGBAS
1daa #BAUD_9600
staa BAUD,X
ldaa #%00001000
staa SCCR1,X
1daa #%00101110
staa SCCR2,X
puly

pulx

pulb

pula

rts

9600 baud.

* wakeup by address mark (MSB=l)

* epable SCI transmit & receive (wake-up mode)

98

* QTEP MOTOR BACKWARD UNTIL OPTO INDEX
+*+ GOES HIGH. FORWARD ONE STEP. RESET
* COUNTER. RESET 74LS74.
GOHOME psha
pshb
pshx
pshy
1ldx #REGBAS
* * toggle CLR1 (PB7) on 74LS74 to set
* Q (PA2) low
ldaa PORTB,X
anda #%01111111
staa PORTB,X
ora #%10000000
staa PORTB, X

* * check for high on PA2
* * (implies that index has
* * pulsed).

GOHOME1 ldaa PORTA,X
anda #%00000100
bne RESETEM
* backward one step since not yet at index
jsr MFWD1 * M# mtrl: MREV1 mtr2: MREV1 mtr3: MFWD1
* pause before next step necessary $o that motor has time to respond
Jjsr SLODOWN
bra GOHOMEl

RESETEM nop
+ Clear 741874 (set Q low) step FWD (REV) one step so that zero cound is

* firgt astep with low Q.
jar MREV1 * M#§ mtrl: MFWDl mtr2: MFWD1l mtr3: MREV1
isr SLODOWN
* reget 74LS74 (Q is lo)
ldaa PORTB,X
anda #%01111111
staa PORTB,X
ora #%10000000
staa PORTB,X

jsr RSTCNTR * reget counter to 0 (LS7166)
jsr RDCNTR +* read counter
1dd bytel * if (-1 < bytel:byteld < 1)
cpd #50001 * goto CLOSED2
bgt OPEN2 * alge
cpd #SFFFP hd goto OPEN2
blt OPEN2 * endif
bra CLOSED2
OPEN2 ldaa #'o0'
staa mode * mode = 'o'
ldaa #'2'
staa modeflag * modeflag = '2°'
bra RESETZ * goto RESETZ
CLOSED2 ldaa #'c’'
staa mode * mode = 'c'
ldaa %'0°
staa modeflag * modeflag = '0°
bra RESETZ * goto RESETZ

RESETZ puly
pulx
pulb
pula
rts

* loop counts down from waitent
* to kill time between step
* commands

99

SLODOWN psha
pshb
ldad

SLO1 subd
bne
pulb
pula
rts

waltcnt
#50001
SLO1l

+ Send a char out of SCI.

OUTSCI psha
pshb
pshx
pshy
lax

OUTSCI1 ldaa
bita

#REGBAS

SCSR, X
#580

beq OUTSCI1

ldaa
staa
puly
pulx
pulb
pula
OUTSCIX rts

tdata
SCDR, X

* loop if not

* ready/ still
* saitting.

* gend char

* QET UP THE LS7166 TO READ THE
* COUNTER REGISTER ON
* THE LS7166.

RDCNTR psha
pshb
pshx
pshy
ldx
ldaa
staa
ldaa
staa

#REGBAS
#%11111111
DDRC, X
#%00000011
PORTC, X

jsr WRREG

ldaa

#%00000000

staa DDRC,X
jsr RDDATA

puly
pulx
pulb
pula
rts

* READ THE THREE BYTE COUNTER
* REGISTER ON THE LS7166

RDDATA psha
pshb
pshx
pshy
ldsx
ldaa
anda
ora
ataa
anda
staa
ldab

#REGBAS
PORTA, X
#%01111111
#%01100000
PORTA, X
#%00111111
PORTA, X
PORTC, X

100

stab bytel

ora #%01100000
staa PORTA,X
anda #%00111111
staa PORTA,X
ldab PORTC,X
stab bytel

ora #%01100000
staa PORTA,X
anda #%00111111
staa PORTA,X
ldab PORTC.X
stab byte2

ora #%01100000
staa PORTA,X
puly

pulx

pulb

pula

rts

'Y 222222}
* PRCNT -- Convert the six byte counter value to a two byte value (degrees)
* and store at theta:theta+l
'z 222 2 2
PRCNT psha
pshb
pshx
pshy
1dx #REGBAS

ldaa bytel
jsr TOASCII
pshb

staa tdata
jsr OUTSCI
pula

staa tdata
jsr OUTSCI

ldaa bytel
{sr TOASCII
pshb

staa tdata
jar OUTSCI
pula

staa tdata
jsr OUTSCI

PRCNTX puly
pulx
pulb
pula
rts

(2222 2 22 2 J
* PRTHETA -- Convert the six byte counter valus to a two byte valug (degrees)
* and astore at theta:theta+l
HARRW W RN
PRTHETA psha
pshb
pshx
pshy
ldx #REGBAS
jsr DIV2DEG

ldaa theta

101

isr TOASCII
pshb

staa tdata
jsxr OUTSCI
pula

staa tdata
jar 0OUTSCI

ldaa theta+l
jsr TOASCII
pshb

staa tdata
jar OUTSCI
pula

staa tdata
jsr OUTSCI

PRTHETX puly
pulx
pulb
pula
rts

IZI 2222 132

* PRMODE -- Print mode and modeflag

EZ2 X2 R 2 2 L]

PRMODE psha

pshb

pshx

pshy

ldaa mode
staa tdata
jax ouUTSCI

ldaa modeflag
staa tdata
isx OUTSCI

puly
pulx
pulb
pula
rts

'2 222X 22234
* PREST -- Print estimated theta
T2 222222 2 4
PREST psha
pshb
pahx
pshy

ldaa theta_e
isr TOASCII
pshb

staa tdata
jsr OUTSCI
pula

staa tdata
jsxr OUTSCI

1daa theta_ e+l
jar TOASCII
pshb

staa tdata
isx OQUTSCI
pula

staa tdata

102

jsxr OUTSCI

puly
pulx
pulb
pula
rts

(222222 2 2 2 J
* 8-bit binary in A -> 2 ascil digits in A:B
(222222 2 2 34
TOASCII tab
rora
rora
roxa
rora
anda #S$0F
adda #$30
cmpa #$39
ble TASC1l
adda #7
TASC1 andb #$0F
addb #$30
cmpb #$39
ble TASCX
addb #7
TASCX rts

* WRITE A SPACE TO THE SCI
WRSPACE psha

pshb

ldaa #520

staa tdata

jsxr OUTSCI

pulb

pula

rts

T2 2122 L)
* STEPIT -- Calculate and send motor command.
'YX 213222}
STEPIT NOP
* Save old accumulator values
psha
pshb
pshx
pshy
* Reset steps
ldd #50000
std steps

* calculate new estimate for theta using theta_e and steps (numbexr of
* gteps since last update.
STEPIT1 nop

ldad steps
cpd #$0000
blt netback
bra netfwd
netback 1ldd #50000
subd steps
jax stpadeg
subd theta_e
std theta e
lad #50000
subd theta_e
std theta_e

103

bra newest

netfwd 1ldad steps
isr stp2deg
addd theta_e
std theta_e
bra newest

newest ldd #$0000
std steps

*+ Determine mode of operation

isr RDCNTR * yead countsr value into byte2, bytel,bytel
Jmxr DIV2ADEG * convert counter value to degrees (theta)
ldaa mode * if open loop mode goto CONT1
cmpa #'0
beq CONT1
ldd theta » cnterr = theta - theta_e
subd theta_e
std cnterr
cpd #5$0000 * cnterr = abs(cnterr)
bge MODECHK
lad #$0000
subd cnterr
MODECHK cpd MAXERR * {f cnterxr>MAXERR goto OPEN3
bgt OPEN3
bra CLOSED3 * jump to CLOSED3

OPEN3 ldaa #'o’
staa mode

ldaa #'3
staa modeflag
bra CONT1

CLOSED3 ldaa #'c’
staa mode

ldaa #'0
staa modeflag
bra CONT1
* Datermine number and direction of steps
CONT1 ldaa fatop * {f fatop = '1'
cmpa #'1 * fastop = '0!
bne CONT2 A if rdata = 'S’
ldaa #'0 hd if mode=closed
staa fatop o theta_d = theta
ldaa rdata * else
cmpa #'8’ * theta_d = theta_ e
bne CONT2 * endif
ldaa mode
cmpa #'0"
beq olstop
1ld4d theta hd endif
bra storit
olstop 1ldd theta_e
gstorit std theta_d * endif

* Calculate delta theta
CONT2 nop

ldaa mode

cmpa #'c’

beq CLOSED * if mode = closed then

idd theta_d * delta_th = theta a - theta
subd theta_e * alse

std delta_th hd delta_th = theta_d - theta_ e
bra MOVEON * endif

104

CLOSED 1ldd theta_a
subd theta
std delta_th

* Use delta theta to determine motor direction
MOVEON pshb

psha

puly * Y = delta_th

cpy #SFFFF

blt JGOREV * if delta_th < -1 GOREV

cpy #$0001

bgt GOFWD * {f delta _th > 1 GOFWD

jmp STEPITX * branch to STEPITX (Good enough!)

JGOREV jmp GOREV

* Move motor forward if necessary
GOFWD 1add theta
std theta_o
cpy #$S00B4
ble GOFWDl
1dy #500B4
GOFWD1 nop
pshy
pula
pulb
1ldaa #S0A
mul
1dx #$09
idiv
pshx
puly L4
GOFWD2 ldaa #'1
cmpa fatop
bne fwda
Jmp STEPIT1
fwda lad steps
addd #3501
std ateps
jsr MFWD1l * Take one step forward
isxr SLODOWN * Pause between steps
dey * Y=Y ~1
cpy #50000
bne GOFWD2 * If Y <> 0 jump to GOFWD2

= LSB of Y (MSB = $00)
= $0A (10)

= B*$OA

= $09 (9)

= LSB*10/9

2R B
Mo

X (steps)

ldaa mode * if open loop mode goto CONT3
cmpa #'o'
begq CONT3
1dd theta_o
isxr RDCNTR *» read counter value into byte2,bytel,bytel
jmxr DIVADEG * convert counter value to degrees (theta)
cpd theta
beq FOPEN1
jmp STEPITL * Jump to STEPIT1
FOPEN1 1ldaa #'o’
staa mode
ldaa #°'1°
staa modeflag
CONT3 jmp STEPIT1

* Move motor backward if necessary
GOREV 1dd theta
std theta_o
1dd #$0000 *Da=a0
subd delta_th * D= D - delta_th
pshb
psha
puly * Y =D (Y = -delta_th)
cpy #$00B¢

105

ble GOREV1

ldy #$00p4
GOREV1 nop
pshy
pula
pulb * B = LSB of Y (MSB = $00)
ldaa #$0A * A = $0A (10)
mal * D = B*$0A
ldx #$09 * X = $09 (9)
idiv * X = LSB*10/9
pshx
puly * Y = X (steps)
GOREV2 nop
ldaa #'1
cmpa fatop
bne reva
Jmp STEPIT1
reva lda steps
subd #$01
std steps
jsr MREV1 * Take one step backward
jsr SLODOWN * Pause hetween staps
dey * Y=Y -1
cpy #$0000
bne GOREV2 * If Y <> 0 jump to GOREV2
ldaa mode * if open loop mode goto CONT4
cupa #'0°
beq CONT4
144 theta_o
jsx RDCNTR * read counter value into byte2,bytel, bytel
jar DIV2DEG * convert counter value to degrees (theta)
cpd theta
beq ROPEN1
jmp STEPIT1 * Jump to STEPIT1
ROPEN1 1ldaa #'0’
staa mode
ldaa #'1'
staa modeflag
CONT4 jmp STEPITL * Jump to STEPIT1
* * Recall old accumulator values
STEPITX puly
pulix
pulb
pula
rts

* Tgsue command for one step backward
MREV1 psha
pshb
pshx
pshy
1ldx #REGBAS
ldab PORTA,X
andb #%11100111
stab PORTA,X
orab #%00001000
stab PORTA,X
puly
pulx
pulb
pula
rts

* TIgsue command for one step forwaxd
MFWD1 psha
pshb

106

pshx

pshy

1ldx #REGBAS
ldab PORTA,X
orab #%00010000
andb #%11110111
stab PORTA,X
orab #%00001000
stab PORTA,X
puly

puls

pulb

pula

rts

ITXT X222 LA 22 22
* HEXBIN(a) - Convert the ASCII character in a
* to binary and shift into shftreg. Returns value
* in TMP1 incremented if a is not hex.
2 XS 2RI E A 2 2 2 4
HEXBIN PSHA
PSHB
PSHX
pshy
JSR UPCASE convert to upper case
CMPA #'0°
BLT HEXNOT Jump if a < $30
CMPA #'9'
BLE HEXNMB Jump 1if 0-9
CMPA #°'A°
BLT HEXNOT Jump if $39> a <$41
CMPA #'F*
BGT HEXNOT Jump if a > $46
ADDA #%59 convert $A-SF
HEXNMB ANDA #350F convert to binary
LDX #SHFTREG
LDAB #4
HEXSHFT ASL 1,X 2 byte shift through
ROL 0,X carry bit
DECB
BGT HEXSHFT shift 4 tinmes
ORARA 1,X
STAA 1,X
BRA HEXRTS
HEXNOT INC TMP1l indicate not hex
HEXRTS puly
PULX
PULB
PULA
RTS

FTXZ2Y2Z 23S EL 2R 2 3

« UPCASE(a) - If the contents of A is alpha,
* returns a converted to uppercase.
FIYITTE RS R 2 R A0 22

UPCASE CMPA #'a’

BLT UPCASEl Jump if < a
CMPA #'z'

BGT UPCASEl Jump if > =z
SUBA #3520 convert

UPCASEl RTS

YT L SR A2 S 2 R 2 2)
« DIV2DEG -- Converts Count (in divisions) to theta (in degrees)
T2 2L 2 2 2 2 4 2 X2 4
DIV2DEG psha
pshb
pshx
pshy * Push Y onto stack

107

ldaa
psha

1ldaa
staa
ldy
idd
cpd
bge
lad
subd
psha
ldaa
staa
pula

NOCHNG nop

* Determine how many times D is

T™MP1

#500
THMP1
#50000
bytel
#$0000
NOCHNG
#50000
bytel

#1
TMP1

TMP1 =

* Y =0
D = COUNT (in divisions) (512 div/rev)

»

If byte

0

>= 0, jump to NOCHNG

D = -bytel:bytel

TMP1 =

1

divisible by $100. $100 div = $B4 deg.

CNT1 cpd #50100
ble CNT2 * Jump to CNT2 if D <= $0100
subd #$0100 * D=D - $100
iny * Y=Y +1
bra CNT1 * Jump always to CNT1
CNT2 ldaa #$2D * A = $2D (45)
mal *D=A*B (B is LSB of COUNT, MSB = $00)
ldx #$0040 * IX = $40 (64)
idiv * IX = D/IX
pshx * pugsh X onto Stack
pula * Pull A off stack (A = MSB of D)
pulb * pull B off stack (B = LSB of D)
std theta * theta = IX (second term of theta)
pshy * push Y onto stack
pula * pull A off stack (A = MSB of IY)
puld * pull B off stack (B = LSB of IY)
ldaa #$B4 * A = $B4 (180)
mul *D=A*B
addd theta * D =D + theta
std theta * theta = D
ldaa TMP1 * Look at TMP1l
cmpa #1 *
bne NOCHNG2 * If TMP1l is not equal to 1, jump to NOCHNG2
144 #$0000 *
subd theta *
std theta * theta = -theta
NOCHNG2 nop
pula
staa TMP1
puly * Pull Y off stack
pulx *+ Pull X off stack
pulb * pull B off stack
pula * pull A off stack
rts -
FYYZEEEEEE RS L R LA L L 4 2)
* gtp2deg -- Converts steps in D (400/rev) to degrees (360/rev) in D.

XTI L 2222 R X2 22 2 22l

stp2deg pshx

8241

mulit

pshy
std

ldaa
ldy

adda
dey
bne
std

tmplé6

#$0000
#9
tmpl6

mulit
tpl6

* Push X onto stack
* push Y onto stack

108

ldx #10

idiv

[3-44 tmpls6

pshx

pula

pulb

std tmplé6
s2dz puly
pulx
rts

(232222 2 2)

* SCI Interupt Service Routine

* If first byte is fa or ADDRESS,
* dxflag is set to $31 and

* remaining bytes are stored in rdata
tEX 2222222 X)

SCI_ISR ldsx #REGBAS
ldaa 8CSR, X
ldaa SCDR, X
cmpa #5fa
beq isxr2
cmpa ADDRESS
beq isrxr2
Jmp isxd
isr2 1dy #rdata
isr3 breclr SCSR,X #%00100000 isx3
ldaa SCDR, X
staa 0,Y
iny
cpyY #COMSIZE+#R_DATA
blo isr3
* {f rdata:rdata+3 = 'S***' then
* fstop = '1!
* rtdi
* end
ldaa rdata
cmpa #'s’
bne nostop
ldaa #'1
staa fatop
Jmp isxd

nostop nop

if all rdata byte 0-% or A-F then
set flag
else
rdata = 0000
end
return
ldaa #$00
staa TMPl
1dy #rdata
ldaa 0,Y
isr HEXBIN
ldaa TMP1
bne isrxd
ldaa 1,Y
isr HEXBIN
ldaa SHFTREG+1
staa theta_d
idaa 2,Y
jsr HEXBIN
ldaa TMP1l
bne isx4

* % % & % ¥

* Pull Y off stack
* Pull X off stack

necessary to reset flag
read first byte

if bytel .eg. $fa then goto isx2

if bytel .ne. ADDRESS goto isrd

* gtop here until byte is received
* read & save byte

* increment pointer
* compare pointer to max pointer
* {f all bytes not read goto isr3

* A = rdata

* fatop = 'l' (valid data)
* rtd

109

ldaa 3,Y

jsr HEXBIN
ldaa SHFTREG+1
staa theta_d+1l

ldaa
staa

ldd
cpd
bge
144
std
LIM1 cpd
ble
lda
std
LIM2 nop

isrd nop
bsget
zas_1isr zrti

AARRAREARE

* STARTUP --

AR RRTRRER

STARTUP lds
isr
ldaa
staa
isx

LOOPO jsr
ldaa
staa
jar
ldaa
staa
jar

ldy
pausel dey
bne

ldaa
cmpa
beq
jsxr
bra
CLLOOP jsxr
GOLOOP Jsr

#$31 * sat good data received flag
dxflag

theta_d * {f theta_d < lim min then

1lim min * theta_d = lim min

LIM1 * endif

lim min

theta_d4d

1lim max * if theta_d > lim_max then
LIM2 - theta d = lim max
1im_max * endif

theta_d

SCCR2,X #%00000010 * RWU == 1 (MCU in wakeup mode)

* return from interupt

MAIN

#STACKTOP

INIT

#CR * Does not affect master. Looks better on screen.
tdata

oUTSCI

RDCNTR

#S£0 * magter address
tdata

OUTSCI

#S£0 * magster address
tdata

oUTSCI

#$FF * pauss to allow master to select port

pausel

mode
#'c’
CLLOOP
PREST
GOLOOP
PRTHETA
PRMODE

* Write command to SCI.
* Check for recsived command
LOOP1 ldaa dxflag

cmpa
bne
isx
ldaa
staa
ZLOOPO bra

#531
LOOP1
STEPIT
#500
dxflag
LOOPO

110

E. Using Pcbug11 to Program the Motorola 68HC11E9

111

QBUUHNAL PAGE 1§ o
OF POOR o v SESHCHEVBULA

S68HC11EVBU Customer:

Both the staridard arid student EVBUs cottié with an MC68HC1 1E9FN1 MCLUJ installed 66 the
board and the BUFFALO thonitor prograrit $toted int the MCU-internal ROM. But tha studest
EVBU it also contains 4 blank MC68HC711E9 MCU and PCbugii, a PC-based michitos
program. A complete description of the PCbugl1 is provided in the PCbugll User's Manual,
M68PCBUG11/D1. While a detailed desctiptiont of the BUFFALO monitor i§ available in the
. M68HC11EVBU Universal Evaluation Board Usét’s Manual, M68HC11EVBU/AD1.

You may install the blank MC68HC711E9 MCU in the EVBU socket at location (3. Afier
instailing the 711E9 MCU on the EVBU it mdy be programmed using PCbugil. Either
BUFFALQO or a user-developed program can be storéd-in the 711E9 MCU-int&tital EPROM. Step-
by-step EPROM programming instructions are provided in this letter of refer to page 4-12 of the
PCbugl1 user's manual for additional information.

WHAT IS PCbugl1?

PCbugl1 is a software package for easy access to and sithple expérimeéntation with M68HC11
microcontroller unit (MCU) devices. PCbugl1 1ét8 you program any meghibét of the M68HC11
MCU family and examine the behavior of intértial peripherals under speeifie conditions. In
addition, you may run your own programs of the MCU; breakpoint ptocsssing and trace
processing afé available.
To cotfiiiré the EVBU to usé PCbugl1:

1. Reove the jumper from J7, and pldc# it Across J3. Moving theé juthper to J3 grounds

thié MODB pin and at reset places thé HC11 in BOOTSTRAP mode.

NOTE

Refer to Figure 2-1 of the M68HC11EVBU Universal Evaluation
Board User's Manual, M68HC11EVBU/ADI, for jumpet header
and connector locations.

2. Connect the EVBU to your PC serial poit via 4 uset-Supplied 25-pin cable. The PC
serial port can be either COM1 or COM2. The cablé must be a Hayes-compatible
modem cable and is available at most eléctronic supply stores.

3. Apply powet to the EVBU.

UNIVERSAL EVALUATION BOARD CUSTOMER LETTER MOTOROLA

S68HC11EVBUAL] 44 1-1
Lz

Discenial Pace
' 7 M pomn 4”'!“? y*r%
4. To start PChugl1 from the comtnarid fifia: ‘
PChugll -E port=i<CR> Wh=- /0 is COM2, usé port=2.
<CK_- is the symbol for carriage return.

5. The registers should be displayed on thié $créen, and a >> prompt in the window at the .
bottom of the screen.

6. With PCbug11 version 3.24A, enter ofi thié PC keyboard:
CONTROL BASE HEX<CR>

This defines thé keyboard input default 4s hexadecimal. By doing this, you do riot have
to add the $ to inputs.

This should get you started with PCbugl1. Becdusé the TALKER codé used i this éxafhiple
resides in RAM, you are limtited to the amount of frae spacé that you can usé fof vatiables. It fay
be useful to put the TALKER into EPROM (it takes abtut 200 bytes), and 163ve 1108t of youf uses
space fres. For more detail oh the TALKER refer to paragtaph 4.4 of the PCbiagi1 manual.

MOTOROLA _MERSAL EVALUATION BOARD CUSTOMER LETTER
1-2 (7 ' S88HC11EVBUAL1

RO PR
i 4P ; - ' g DALY
PROGRAMMING EEPROM . W PSTR

Files td be ptogrammed into the 711E9 MCU-iritétal EEPROM must be in S-record format. The
S-record fotinat is explained in Appendix A of the M68HC11EVBU Universal Evaluation Board
User's Maiiual, M68HC11EVBU/ADI.

NOTE
The S-récord to bé downloadéd irto the 711E9 MCU-intemal
EEPROM must be ORGed at addtess $B600,

Enter on the PC keyboard:

EEPROM $B600 $B7FF<CR> This léts PCbugl! krow that thése addreésses are
EEPROM and that it should usé 2 EEPROM

algorithtn.
Ms $1035 00<CR> This ¢léars the block protéct ragister (BPROT) and
lets you progratn thé EEPROM s#ction of the 711E9
MCU.
LOADS filenaitie<CR> This 168ds an S-record format filé ifite the EEPROM
s&ctioft of the 711E9 MCU.
VERF filename<CR> This verifies that the S-récofd format file was
successfully loaded into EEPROM.
UNIVERSAL EVALUATION BOARD CUSTOMER LETTER MOTOROLA
SB8HC11EVBUA1 43 13

(14

Wi.‘-b RO
OR Food 7 rfﬁ-: Y

PROGRAMMING EPROM |
Files to be programmed into the 711E9 MCU-intérnal EPROM must be in S-record format. The S-

record format is explaine. 'n Appendix A of the M6BHC11EVBU Universal Evaluation Boatd
User's Manual, M68HC11::vBU/ADI1.

NOTE

The S-tecord to be downloadéd into the 711E9 MCU-intémnal
EPROM must be ORGed at address $D000.

To prograth the MCU-internal EPROM eniter on thé PC kéyboard:

EPROM $D000 $FFFF<CR> This 1&t8 PCbugll kriow that thase addresses are
EPROM and that it should usé 8 EPROM algotithei.

Apply +13Vde to the XIRQ pin To propiam the MCU-intemal EBROM, +12Vde
_ rirtiét b applied 1o the XIRQ pin of the 711E9 MCU.
Attach 2 ¥12Vde powet supply 15 the MCU 1/0 pott
confisctor P4, pin-18. A 100Q resister toust bé
inistalled in séries with the +12Vde power supply and

P4, pin-18.

CAUTION

Do not apply a +12Vdc progréfithifig voltage power sourcé when
the main VDD (+5Vdc) power is off; doitig so will damagé the
EVBU intrgrated circuits. Always$ tith oh the main Vhp (+5Vdc)

power beforé the +12Vdc progratifiifig voltage is applied.

LOADS filenatiie<CR> This loads an S-récord formiat file irito the EPROM
section of thé 711E9 MCU.

VERF fileniame<CR> This vétifiés that the S-record format file was
successfully loaded into EPROM.

LETTER

MOTOROLA 14DYVERSAL EVALUATION BOARD CUSTOMER
14 s S68HC11EVBUALY

+ o e T T e

¢

The EPROM and EEPROM commiand$ mitiét be entered befot® you cai progra
EPROM and EEPROM. This sets-up PCbug!1 EPROM and EEPROM progratimiag
routines. o

Don't forget to clear the BPROT register before trying to modify EEPROM locations.

Initially, you should wotk on your routifiés in EEPROM. Since you can tracs thiough
EEPROM like RAM, it is best to try them out there before committing to EPROM. Whea
tracing thé EEPROM use the memory set (MS) command to modify the block protsct
register to 00 (MS $1035 00) and th¢ EEPROM command (EEPROM $B600 $B7FE).

Be suré to &t your stack pointét wheré it will not intérfére with the PChbugll stack
pointer. The TALKER program start$ at $0000 in RAM,; with the first fres byts at
$0100. The PCbugl] stack pointer is set to SO1FF. Set your stack fointet at léast 20
bytés ($01EB) lower than this.

¢ if 2 COM faiilt oceuts whilé éntéting cotnifiands on thé command line:

é

1. Check the cable between the EVBU and the PC. If thé confisction i8 okay, try
issuing the control timeout commarnd (CONTROL TIMEOUT 10000). This gives
the MCU mior¢ time to réspofid (nésdéd when PCbugl1 is rititifig on 4 fast PC).

2. Make suré the transmit pinl for thé PC conneécts to thé réceive pift of the MCU. The
transtiit pin will have approxiriatély 9 to 12 volts on it. Thé réceive pin will only
have d few millivolts if any.

3. Remové the MCU from the Sockat and chéck the pins for damagé. if the pins are
shorted, straighten the pins and catefully réinsért the MCU.

If you are using an XT-PC and the display locks-up, try issning 2 MODE CO80 at the
DOS promipt.

UNIVERSAL EVALUATION BOARD CUSTOMER LETTER MOTOROLA
SE8HC11EVBU/L1 N 15

